Ying Liu, Ru-de Liu, Jon R. Star, Jia Wang, Huimin Tong
Recent research has shown that reducing the perceptual fluency of shape processing can be an effective means for overcoming the interference of the More A-More B intuitive rule among grade 3 students in a perimeter comparison task. From the perspective of cognitive load, the current study focused on the mechanism of perceptual fluency on overcoming the interference of the More A-More B intuitive rule among grade 3 students in a perimeter comparison task. The existing studies have suggested that perceptual disfluency will inevitably increase ECL in the task-solving process and thus potentially detrimental toward learning. However, we could argue that overcoming the interference of the More A-More B intuitive rule in the disfluent condition could be interpreted as a simultaneous increase in cognitive GCL. Because of the theoretically complementary relationship between ECL and GCL, two experiments were designed to respectively examine ECL and GCL under different perceptual fluency conditions in the perimeter comparison task. Experiment 1 (N = 33) used a dual-task paradigm to examine participants’ ECL, manipulating the clarity of shapes. The results indicated that participants experienced significantly less interference from the More A-More B intuitive rule under the low-perceptual-fluency condition than under the high-perceptual-fluency condition, while ECL was significantly higher under the former condition than under the latter one. Experiment 2 (N = 72) explored GCL in the perimeter comparison task through a self-designed transfer test, using an identical manipulation method of perceptual fluency as in experiment 1. Compared to the high-perceptual-fluency group, participants in the low-perceptual-fluency group performed significantly better in the perimeter comparison task and transfer test. It was concluded that low perceptual fluency resulted in participants’ ECL while at the same time producing GCL during completion of the perimeter comparison task.