Alfonso Pitarque Gracia, Juan Carlos Ruiz Ruiz, Juan Francisco Roy Delgado
En este trabajo se comparan mediante simulación redes neuronales (del tipo perceptrón multicapa) con modelos estadísticos (regresión múltiple, análisis discriminante y regresión logística) en tareas de predicción y clasificación (binaria o no binaria), manipulando los patrones de correlación existentes entre los predictores (o variables de entrada) por un lado, y entre predictores con el criterio (variable de salida) por otro. Los resultados muestran que en tareas de predicción redes neurales y modelos de regresión múltiple tienden a rendir por igual. Por contra en las tareas de clasificación en todo tipo de condiciones las redes neurales rinden mejor que los modelos estadísticos de análisis discriminante y regresión logística. Se discuten los resultados en el marco de la polémica redes neurales vs modelos estadísticos convencionales.