La dominancia está relacionada con el nivel de influencia que una persona tiene en una conversación. El estudio de la dominancia es de especial interés en la psicología social, pero el problema de su estimación automática es un tema muy reciente en los contextos de computación social e inalámbrica. En este trabajo nos centramos en la detección de dominancia a partir del análisis automático de características visuales. Hacemos una estimación de la correlación entre los observadores al categorizar las personas dominantes en un conjunto de conversaciones cara a cara. Definimos diferentes indicadores de dominancia a partir de información gestual, los cuales también son anotados manualmente y comparados con la opinión de los observadores. Además, los indicadores considerados son extraídos de forma automática de las secuencias de vídeo y aprendidos mediante clasificadores binarios. Los resultados de los tres análisis muestran un alto grado de correlación y permiten categorizar de forma automática las personas dominantes en vídeos públicos de debates.
Dominance is referred to the level of influence that a person has in a conversation. Dominance is an important research area in social psychology, but the problem of its automatic estimation is a very recent topic in the contexts of social and wearable computing. In this paper, we focus on the dominance detection of visual cues. We estimate the correlation among observers by categorizing the dominant people in a set of face-to-face conversations. Different dominance indicators from gestural communication are defined, manually annotated, and compared to the observers' opinion. Moreover, these indicators are automatically extracted from video sequences and learnt by using binary classifiers. Results from the three analyses showed a high correlation and allows the categorization of dominant people in public discussion video sequences.