The ability to extract hierarchically organized rule structures from noisy environments is critical to human cognitive, social, and emotional intelligence. Adults spontaneously create hierarchical rule structures of this sort. In the present research, we conducted two experiments to examine the previously unknown developmental origins of this hallmark skill. In Experiment 1, we exploited a visual paradigm previously shown to elicit incidental hierarchical rule learning in adults. In Experiment 2, we used the same learning structure to examine whether these hierarchical-rule-learning mechanisms are domain general and can help infants learn spoken object-label mappings across different speaker contexts. In both experiments, we found that 8-month-olds created and generalized hierarchical rules during learning. Eyeblink rate, an exploratory indicator of striatal dopamine activity, mirrored behavioral-learning patterns. Our results provide direct evidence that the human brain is predisposed to extract knowledge from noisy environments, and they add a fundamental learning mechanism to what is currently known about the neurocognitive toolbox available to infants