B
uscar
R
evistas
Acceso usuarios
Acceso de usuarios registrados
Identificarse
¿Olvidó su contraseña?
¿Es nuevo?
Regístrese
Ventajas de registrarse
Ayuda
Ir al conteni
d
o
Data mining classification techniques
:
an application to tobacco consumption in teenagers
Autores:
Juan José Montaño Moreno, Elena Gervilla García, Berta Cajal Blasco, Alfonso Luis Palmer Pol
Localización:
Anales de psicología
,
ISSN-e
1695-2294,
ISSN
0212-9728,
Vol. 30, Nº. 2, 2014
,
págs.
633-641
Idioma:
inglés
DOI
:
10.6018/analesps.30.2.160881
Enlaces
Texto completo
Dialnet Métricas
:
3
Citas
Referencias bibliográficas
Battiti, R. (1992). First and second order methods for learning: between steepest descent and Newton's method. Neural Computation, 4,...
Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.
Breiman, L., Friedman, J. H., Losen, R. A. & Stone, C.J. (1984). Classification And Regression Trees. Monterey, CA: Wadsworth & Brooks/Cole...
Broman, C. L. (2009). The longitudinal impact of adolescent drug use on socioeconomic outcomes in young adulthood. Journal of Child &...
Broomhead, D. S. & Lowe, D. (1988). Multivariable functional interpolation and adaptive networks. Complex Systems, 2, 321-355.
Buscema, M. (1995). Squashing Theory: A prediction approach for drug behavior. Drugs and Society, 8(3-4), 103-110.
Buscema, M. (1997). A general presentation of artificial neural networks. I. Substance Use & Misuse, 32(1), 97-112.
Buscema, M. (1998). Artificial neural networks and complex systems. I. Theory. Substance Use & Misuse, 33(1), 1-220.
Buscema, M., Intraligi, M. & Bricolo, R. (1998). Artificial neural networks for drug vulnerability recognition and dynamic scenarios simulation....
Carvajal, S. C. & Granillo, T. M. (2006). A prospective test of distal and proximal determinants of smoking initiation in early adolescents....
Ciairano, S., Bosma, H. A., Miceli, R. & Settani, M. (2008). Adolescent substance use in two European countries: Relationships with psychosocial...
Clarke, B., Fokoué, E. & Zhang, H. H. (2009). Principles and Theory for Data Mining and Machine Learning. New York: Springer.
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematical Control, Signal and Systems, 2, 303-314.
De Leeuw, R. N. H., Engels, R. C. M. E., Vermulst, A. A. & Scholte, R. H. J. (2009). Relative risks of exposure to different smoking models...
De Vries, H., Engels, R., Kremers, S., Wetzels, J. & Mudde, A. (2003). Parents' and friends' smoking status as predictors of smoking...
Dick, D. M., Pagan, J. L., Viken, R., Purcell, S., Kaprio, J., Pulkkinen, L. & Rose, R. J. (2007). Changing environmental influences on...
Doran, N., McCharge, D. & Cohen, L. (2007). Impulsivity and the reinforcing value of cigarette smoking. Addictive Behaviors, 32, 90-98.
Fernández, J. R., Secades, R., Vallejo, G. & Errasti, J. M. (2003). Evaluation of what parents know about their children's drug use...
Fisher, L. B., Winickoff, J. P., Camargo, C. A., Colditz, G. A. & Frazier, A. L. (2007). Household smoking restrictions and adolescent...
Fisher, R. A. (1936). The use of multiple measurements on taxonomic problems. Annals of Eugenics, 7, 179-188.
Franken, I. H. A., Muris, P. & Georgieva, I. (2006). Gray's model of personality and addiction. Addictive Behaviors, 31, 399-403.
Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks. Neural Networks, 2, 183-192.
Georgiades, K. & Boyle, M. H. (2007). Adolescent tobacco and cannabis use: young adult outcomes from the Ontario Child Health Study. Journal...
Gervilla, E. & Palmer, A. (2009). Predicción del consumo de cocaína en adolescentes mediante árboles de decisión. Revista de Investigación...
Gervilla, E. & Palmer, A. (2010). Prediction of cannabis and cocaine use in adolescence using decision trees and logistic regression....
Gervilla, E., Cajal, B., Roca, J. & Palmer, A. (2010). Modelling alcohol consumption during adolescente using Zero Inflated Negative Binomial...
Gervilla, E., Jiménez, R., Montaño, J. J., Sesé, A., Cajal, B. & Palmer, A. (2009). La metodología del Data Mining. Una aplicación al...
Giudici, P. (2003). Applied data mining: Statistical methods for business and industry. Chichester: Hoboken, NJ: Wiley.
Hall, J. A. & Valente, T. W. (2007). Adolescent smoking networks: The effect of influence and selection on future smoking. Addictive Behaviors,...
Han, J. & Kamber, M. (2006). Data Mining: Concepts and Techniques (2nd. ed.). San Francisco: Morgan Kaufmann.
Hand, D., Mannila, H. & Smith, P. (2001). Principles of Data Mining. London: The MIT Press.
Hartman, E., Keeler, J. D. & Kowalski, J. M. (1990). Layered neural networks with Gaussian hidden units as universal approximators. Neural...
Hernandez, J., Ramirez, M. & Ferri, C. (2004). Introducción a la Minería de Datos [Introduction to Data Mining]. Madrid: Pearson Educación,...
Hoffman, B. R., Monge, P. R., Chou, C. P. & Valente, T. W. (2007). Perceived peer influence and peer selection on adolescent smoking....
Hoffman, J. H., Welte, J. W. & Barnes, G. M. (2001). Coocurrence of alcohol and cigarette use among adolescents. Addictive Behaviors,...
Hornik, K., Stinchcombe, M. & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359-366.
Hosmer, D. W. & Lemeshow, S. (2000). Applied Logistic Regression (2nd edition). New York: Wiley.
Huver, R. M. E., Engels, R. C. M. E., Vermulst, A. A. & De Vries, H. (2007). Is parenting style a context for smokingspecific parenting...
Johnson, P. B., Boles, S. M. & Kleber, H. D. (2000). The relationship between adolescent smoking and drinking and likelihood estimates...
Kaastra, I., & Boyd, M. (1996). Designing a neural network for forecasting financial and economic time series. Neurocomputing, 10, 215-236.
Kantardzic, M. (2003). Data Mining: Concepts, Models, Methods, and Algorithms. New York: Wiley.
Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Applied Statistics, 29(2), 119-127.
Kitsantas, P., Moore, T. W. & Sly, D. F. (2007). Using classification trees to profile adolescent smoking behaviors. Addictive Behaviors,...
Larose, D. T. (2005). Discovering Knowledge in Data: An Introduction to Data Mining. Hoboken, NJ: Wiley.
Luther, E. J., Parzynski, C. S., Jaszyna-Gasior, M., Bagot, K. S., Royo, M. B., Leff, M. K. & Moolchan, E. T. (2008). Does allowing adolescents...
Maurelli, G. & Di Giulio, M. (1998). Artificial neural networks for the identification of the differences between-lightII and-heavyII...
Molyneux, A., Lewis, S., Antoniak, M., Browne, W., McNeill, A., Godfrey, C. & Britton, J. (2004). Prospective study of the effect of exposure...
Montaño, J. J., Palmer, A. & Muñoz, P. (2011). Artificial neural networks applied to forecasting time series. Psicothema, 23, 322-329.
Muñoz, M. & Graña, J. L. (2001). Factores familiares de riesgo y de protección para el consumo de drogas en adolescentes. Psicothema,...
Okoli, C. T. C., Richardson, C. G. & Johnson, J. L. (2008). An examination of the relationship between adolescents' initial smoking...
Otten, R., Engels, R. C. M. E. & Prinstein, M. J. (2009). A prospective study of perception in adolescent smoking. Journal of Adolescent...
Otten, R., Wanner, B., Vitaro, F. & Engels, R. C. M. E. (2009). Disruptiveness, peer experiences and adolescent smoking: a longterm longitudinal...
Palmer, A. & Montaño, J. J. (1999). ¿Qué son las redes neuronales artificiales? Aplicaciones realizadas en el ámbito de las adicciones....
Palmer, A., Jiménez, R. & Gervilla, E. (2011). Knowledge-Oriented Applications in Data Mining. In Data Mining: Machine learning and statistical...
Palmer, A., Montaño, J. J. & Calafat, A. (2000). Predicción del consumo de éxtasis a partir de redes neuronales artificiales [Ecstasy...
Parr-Rud, O. (2001). Data Mining Cookbook. Modeling Data for Marketing, Risk and Customer Relationship Management. New York: John Wiley &...
Pérez, C. & Santín, D. (2007). Minería de Datos. Técnicas y Herramientas. Madrid: Thomson.
Piko, B. F. (2006). Adolescent smoking and drinking: The role of communal mastery and other social influences. Addictive Behaviors, 31, 102-114.
Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, 1, 81-106.
Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo: Morgan Kaufmann.
Quinlan, J. R. (1997). C5.0 Data Mining Tool. Rule Quest Research, http://www.rulequest.com.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart,...
Sargent, J. D., Tanski, S., Stoolmiller M. & Hanewinkel, R. (2009). Using sensation seeking to target adolescents for substance use interventions....
Shmueli, G., Patel, N. R. & Bruce, P. C. (2007). Data mining in excel: Lecture notes and cases. Arlington, VA: Resampling Stats, Inc.
Simons-Morton, B. (2007). Social influences on adolescent substance use. American Journal of Health Behavior, 31, 672-684.
Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3, 109-118.
Speri, L., Schilirò, G., Bezzetto, A., Cifelli, G., De Battisti, L., Marchi, S., Modenese, M., Varalta, F. & Consigliere, F. (1998). The...
Szabo, E., White, V. & Hayman, J. (2006). Can home smoking restrictions influence adolescents' smoking behaviors if their parents...
Wasserman, P. D. (1989). Neural computing: theory and practice. New York: Van Nostrand Reinhold.
Widrow, B. & Hoff, M. (1960). Adaptive switching circuits. In J. Anderson & E. Rosenfeld (Eds.), Neurocomputing (pp. 126-134). Cambridge,...
Witten, I. H. & Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques (2nd. ed.). San Francisco: Morgan Kaufmann.
Ye, N. (Ed.) (2003). The Handbook of Data Mining. Mahwah, NJ: Lawrence Erlbaum Associates.
Opciones
Mi Psyke
S
elección
Opciones de artículo
Seleccionado
Opciones de compartir
Opciones de entorno
Sugerencia / Errata
Un proyecto de la Biblioteca de la Universidad Complutense de Madrid
Inicio
Buzón de atención
Localización y contacto
Ayuda
Accesibilidad
Aviso Legal
¿En qué podemos ayudarle?
×
Buscar en la ayuda
Buscar