Kevin C. Dieter, Bo Hu, David C. Knill, Randolph Blake, Duje Tadin
Self-generated body movements have reliable visual consequences. This predictive association between vision and action likely underlies modulatory effects of action on visual processing. However, it is unknown whether actions can have generative effects on visual perception. We asked whether, in total darkness, self-generated body movements are sufficient to evoke normally concomitant visual perceptions. Using a deceptive experimental design, we discovered that waving one�s own hand in front of one�s covered eyes can cause visual sensations of motion. Conjecturing that these visual sensations arise from multisensory connectivity, we showed that grapheme-color synesthetes experience substantially stronger kinesthesis-induced visual sensations than nonsynesthetes do. Finally, we found that the perceived vividness of kinesthesis-induced visual sensations predicted participants� ability to smoothly track self-generated hand movements with their eyes in darkness, which indicates that these sensations function like typical retinally driven visual sensations. Evidently, even in the complete absence of external visual input, the brain predicts visual consequences of actions.