Oviedo, España
La potencia y robustez de los procedimientos estadísticos para analizar los efectos en los diseños de medidas repetidas están en función de la satisfacción de los supuestos asociados al análisis, en especial, el supuesto de esfericidad y de homogeneidad de las matrices de covarianza. Desafortunadamente, la violación de estos supuestos es habitual en los datos de las investigaciones aplicadas educativas y psicológicas.
En este artículo teórico revisamos las competencias de varios estadísticos con respecto al error de Tipo I y la potencia obtenidos por diferentes autores mediante estudios de simulación Monte Carlo. También realizamos una investigación Monte Carlo ad hoc para ejemplificar la cuantía del error de Tipo I en los efectos intra-sujeto en un diseño split-plot de medidas repetidas. Examinando todo lo anterior advertimos que diferentes métodos de análisis son apropiados en diferentes situaciones. Concluimos aportando recomendaciones para el análisis de estos diseños en función de la violación o no de las asunciones subyacentes.