Ioannis Adamopoulos, Antonios Valamontes
, Panagiotis Tsirkas
, George Dounias
The increasing severity of climate-related workplace hazards challenges occupational health and safety, particularly for Public Health and Safety Inspectors. Exposure to extreme temperatures, air pollution, and high-risk environments heightens immediate physical threats and long-term burnout. This study employs Artificial Intelligence (AI)-driven predictive analytics and secondary data analysis to assess hazards and forecast burnout risks. Machine learning models, including eXtreme Gradient Boosting (XGBoost 3.0), Random Forest, Autoencoders, and Long Short-Term Memory (LSTMs), achieved 85–90% accuracy in hazard prediction, reducing workplace incidents by 35% over six months. Burnout risk analysis identified key predictors: physical hazard exposure (β = 0.76, p < 0.01), extended work hours (>10 h/day, +40% risk), and inadequate training (β = 0.68, p < 0.05). Adaptive workload scheduling and fatigue monitoring reduced burnout prevalence by 28%. Real-time environmental data improved hazard detection, while Natural Language Processing (NLP)-based text mining identified stress-related indicators in worker reports. The results demonstrate AI’s effectiveness in workplace safety, predicting, classifying, and mitigating risks. Reinforcement learning-based adaptive monitoring optimizes workforce well-being. Expanding predictive-driven occupational health frameworks to broader industries could enhance safety protocols, ensuring proactive risk mitigation. Future applications include integrating biometric wearables and real-time physiological monitoring to improve predictive accuracy and strengthen occupational resilience.