
Citation: Tsiakiri, A.; Plakias, S.;

Vlotinou, P.; Terzoudi, A.; Serdari, A.;

Tsiptsios, D.; Karakitsiou, G.; Psatha,

E.; Kitmeridou, S.; Karavasilis, E.; et al.

Predictive Markers of Post-Stroke

Cognitive Recovery and Depression in

Ischemic Stroke Patients: A 6-Month

Longitudinal Study. Eur. J. Investig.

Health Psychol. Educ. 2024, 14,

3056–3072. https://doi.org/10.3390/

ejihpe14120200

Received: 2 October 2024

Revised: 12 November 2024

Accepted: 10 December 2024

Published: 11 December 2024

Copyright: © 2024 by the authors.

Published by MDPI on behalf of the

University Association of Education

and Psychology. Licensee MDPI, Basel,

Switzerland. This article is an open

access article distributed under the

terms and conditions of the Creative

Commons Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Predictive Markers of Post-Stroke Cognitive Recovery and
Depression in Ischemic Stroke Patients: A 6-Month
Longitudinal Study
Anna Tsiakiri 1,* , Spyridon Plakias 2 , Pinelopi Vlotinou 3 , Aikaterini Terzoudi 1, Aspasia Serdari 4,
Dimitrios Tsiptsios 1,5 , Georgia Karakitsiou 6, Evlampia Psatha 7, Sofia Kitmeridou 1, Efstratios Karavasilis 8,
Nikolaos Aggelousis 9 , Konstantinos Vadikolias 1 and Foteini Christidi 1

1 Department of Neurology, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
terzoudi@med.duth.gr (A.T.); dtsipt@auth.gr (D.T.); s.kitmer@gmail.com (S.K.); kvadikol@med.duth.gr (K.V.);
christidi.f.a@gmail.com (F.C.)

2 Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece;
spyros_plakias@yahoo.gr

3 Department of Occupational Therapy, University of West Attica, 12243 Athens, Greece; pvlotinou@uniwa.gr
4 Department of Child and Adolescent, Democritus University of Thrace, 68100 Alexandroupolis, Greece;

aserntar@med.duth.gr
5 3rd Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
6 Department of Psychiatry, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;

gkarakit@med.duth.gr
7 Department of Radiology, School of Medicine, Democritus University of Thrace,

68100 Alexandroupolis, Greece; epsatha@med.duth.gr
8 Medical Physics Laboratory, Democritus University of Thrace, 68100 Alexandroupolis, Greece;

ekaravas@med.duth.gr
9 Department of Physical Education and Sport Science, Democritus University of Thrace,

69100 Komotini, Greece; nagelous@phyed.duth.gr
* Correspondence: atsiakir@med.duth.gr

Abstract: The growing number of stroke survivors face physical, cognitive, and psychosocial im-
pairments, making stroke a significant contributor to global disability. Various factors have been
identified as key predictors of post-stroke outcomes. The aim of this study was to develop a stan-
dardized predictive model that integrates various demographic and clinical factors to better predict
post-stroke cognitive recovery and depression in patients with ischemic stroke (IS). We included IS
patients during both the acute phase and six months post-stroke and considered neuropsychological
measures (screening scales, individual tests, functional cognitive scales), stroke severity and laterality,
as well as functional disability measures. The study identified several key predictors of post-stroke
cognitive recovery and depression in IS patients. Higher education and younger age were associated
with better cognitive recovery. Lower stroke severity, indicated by lower National Institutes of Health
Stroke Scale (NIHSS) scores, also contributed to better cognitive outcomes. Patients with lower
modified Rankin Scale (mRS) scores showed improved performance on cognitive tests and lower
post-stroke depression scores. The study concluded that age, education, stroke severity and functional
status are the most critical predictors of cognitive recovery and post-stroke emotional status in IS pa-
tients. Tailoring rehabilitation strategies based on these predictive markers can significantly improve
patient outcomes.

Keywords: ischemic stroke; predictive markers; demographics; stroke severity; functional status;
neuropsychological assessment; cognitive recovery; depression

1. Introduction

Stroke is a leading cause of morbidity and mortality worldwide, with its impact on pub-
lic health being substantial. Of note, ischemic stroke (IS) accounts for approximately 80% of
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all strokes. While mortality rates have slowly declined over recent years, a growing number
of stroke survivors are left to cope with a wide range of physical, cognitive, functional,
and psychosocial impairments [1]. The latter yields stroke as one of the most significant
contributors to global disability, with several factors, such as increasing age, cardiovascular
risks, low education levels, and the severity of the stroke, identified as strong predictors of
post-stroke outcomes [2]. These determinants, in combination with pre-existing conditions
like atherosclerotic disease and previous strokes, have been consistently linked to worse
recovery and long-term prognosis [3–6]. The latter is thus a multifaceted process influenced
by various patient-specific and stroke-related factors, making it challenging to predict
outcomes and responses to rehabilitation.

Post-stroke cognitive impairment (PSCI) encompasses a variety of deficits, particularly
in executive function, memory, attention, and language. Cognitive dysfunction can affect
31% to 77% of stroke patients, depending on stroke severity and demographic factors [7,8].
Acute phase cognitive impairments can be present in up to 90% of patients [9,10], with
improvement seen in the first three to six months [10]. However, cognitive deficits can
persist even after this period, with 30% of survivors continuing to show impairments
at three months, and up to 42% at five years post-stroke [11]. Chronic impairments,
particularly in executive functions, significantly contribute to long-term disability and
dependency. Identifying predictors like age, education, stroke severity, and lesion location
early on is critical, as these factors influence recovery trajectories. Imaging markers such
as infarct volume and white matter changes also play a role in determining cognitive
outcomes [9,12,13]. The presence of cognitive deficits post-stroke increases the likelihood
of long-term conditions like dementia, particularly among older patients [9,14].

Post-stroke depression (PSD) is a common complication, occurring in about one-third
of stroke patients [5], and is associated with poor functional and cognitive outcomes.
Depression can develop both in the acute and chronic phases of stroke, with various
factors such as stroke severity, lesion location, and pre-existing psychological conditions
influencing its onset and severity. PSD negatively impacts rehabilitation by reducing
motivation and cognitive recovery, leading to increased dependency [15]. Predictive factors
for PSD include younger age, female sex, and pre-existing depressive symptoms, while the
presence of post-stroke apathy and cognitive impairments also increases the risk [9]. Early
detection and management of PSD are crucial, as they are associated with better functional
recovery and improved quality of life.

Several factors have been studied as potential predictors of cognitive and emotional
outcomes post-stroke. Demographic variables such as younger age and higher education
are strongly associated with better cognitive recovery [16], while clinical markers like
lower stroke severity (measured by NIHSS), better functional outcomes (measured by mRS
and Barthel Index), and lower infarct volume on imaging also contribute to improved
cognitive performance [12,13]. For emotional outcomes, factors such as female sex, history
of depression, and the presence of cognitive impairments are associated with a higher risk
of PSD [5,9,17]. Functional status and cognitive deficits in domains like executive function,
attention, and memory significantly predict long-term outcomes and are influenced by both
demographic and clinical variables [18,19]. The literature acknowledges the importance of
early neuropsychological assessments in predicting recovery [20,21], but challenges remain
in determining their precise predictive value, especially considering the variety of cognitive
impairments and the lack of standardized approaches to diagnosis.

Previous research has developed various predictive models aimed at estimating
post-stroke cognitive and emotional outcomes. Specifically, Guo et al. [22] reviewed
clinical models for post-stroke depression (PSD) and provided early-stage risk assess-
ment for PSD based on clinical markers within the first week of stroke onset. Similarly,
Richter et al. [23] proposed a study protocol focused on identifying prognostic markers
for PSD, emphasizing the integration of clinical and biological data to improve predictive
accuracy. Additionally, other researchers [24] applied deep learning with multimodal
data sources, such as neuroimaging and clinical records, to forecast post-stroke cognitive
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recovery, using explainable AI for enhanced feature selection. Further, a meta-analysis [25]
was conducted to assess the effectiveness of machine learning models in predicting post-
stroke cognitive impairment (PSCI), demonstrating significant advancements in prediction
accuracy yet also highlighting ongoing limitations in model consistency across patient
groups. Hbid et al. [26] developed a patient-specific model to predict long-term cognitive
decline, focusing on changes over a five-year period post-stroke.

Despite these advancements, existing models often lack consistency and generaliz-
ability across diverse patient populations, largely due to differences in methodologies,
predictor variables, and statistical techniques. Our study aims to address these gaps by
integrating a broader set of demographic and clinical markers to create a more standardized
and comprehensive predictive model for post-stroke cognitive recovery and depression. In
this way, this study seeks to enhance prediction accuracy and reliability, thereby improving
the model’s applicability to diverse patient populations and supporting more targeted
rehabilitation approaches.

2. Materials and Methods

This was a longitudinal study that examined patients with IS both during the acute
phase of their hospitalization and in the chronic phase, 6 months post-stroke. All data were
collected in accordance with the Declaration of Helsinki and in compliance with the Scientific
Council of the University General Hospital of Alexandroupolis. Written informed consent
was obtained from all participants in the study. The data were analyzed anonymously.

2.1. Participants

Patients were included in the study if they met the following criteria: age over
18 years, radiologically confirmed first-ever IS with symptom onset within 24 h and Greek
as their native or speaking language. Additionally, patients needed to have no other neuro-
logical diseases apart from stroke, no history of major psychiatric disorders (such as major
depressive disorder, schizophrenia, or bipolar disorder), and no history of alcohol or drug
abuse. IS had to be confirmed by MRI, and the stroke needed to have occurred between
5 and 7 days prior to the assessment.

Participants were excluded if they had severe motor or sensory deficits (such as vi-
sual or hearing impairments) that could hinder cognitive performance, severe aphasia or
dysarthria that would interfere with completing the study assessments, expressive or recep-
tive aphasia at the time of examination, or an altered state of consciousness. Additionally,
patients with cognitive impairment or impaired activities of daily living (ADL) reported by
informants prior to the stroke, those with primary hemorrhagic stroke, acute neurological
illnesses other than stroke, or a premorbid Axis I psychiatric disorder were also excluded
from the study.

2.2. Demographic and Clinical Markers

Demographic details, such as age, sex, and educational background, were gathered
from all participants. Clinical information recorded for each individual encompassed the
duration of the disease (number of days since symptom onset), stroke type (only IS was
recorded), and the hemisphere affected (right, left, or both). All patients underwent brain
MRI on a 3.0 T MR scanner and neuroimaging data were evaluated by an experienced
neuroradiologist (E.P.).

The assessment of clinical markers was conducted upon the patient’s admission to
the hospital. The clinical severity of stroke was assessed using the National Institutes of
Health Stroke Scale (NIHSS) [27]. This scale serves as a critical tool for healthcare profes-
sionals to measure the extent of neurological impairment in stroke patients. It consists of
15 different items that evaluate a range of functions, such as consciousness, motor abilities,
coordination, and language. The total score can range from 0 to 42, with higher scores
reflecting more severe strokes. The NIHSS plays a crucial role in guiding clinical decisions,
determining the appropriate level of care, and monitoring changes in the patient’s condition
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over time. However, it is just one aspect of the comprehensive evaluation required for
stroke survivors.

In addition to the NIHSS, the functional disability of stroke patients was measured
using the Modified Rankin Scale (mRS) [28] and the Barthel Index (BI) [29]. The mRS is a
widely recognized tool in neurology that simplifies the assessment of functional impairment,
grading patients on a scale from 0 (no symptoms) to 6 (death). This tool enables clinicians
to efficiently classify a patient’s level of disability, making it easier to guide treatment plans
and track progress over time. The mRS is particularly useful in both acute and long-term
care management, helping determine the patient’s recovery trajectory.

The Barthel Index (BI), on the other hand, evaluates the patient’s ability to perform
essential activities of daily living, such as eating, dressing, and mobility. Scoring is out
of 100, with higher scores indicating a higher level of functional independence [30]. This
index is instrumental for rehabilitation professionals in designing individualized treatment
plans that focus on improving the patient’s quality of life and restoring autonomy after
a stroke.

2.3. Neuropsychological Markers

A neuropsychological evaluation took place within the acute phase (i.e., 5–7 days
post-stroke) and was conducted by an experienced neuropsychologist (A.T.) The following
neuropsychological screening measures and tests, which are standardized in the local
population, were administered:

• The Montreal Cognitive Assessment (MoCA) is one of the few tools specifically de-
signed to detect mild cognitive impairment (MCI) [31,32]. It uses a 30-point scale to
evaluate language, short-term memory, visuospatial skills, attention, working memory,
executive function, language, and orientation. The MoCA emphasizes tasks related
to frontal lobe executive functioning, making it potentially more sensitive than the
MMSE in detecting non-Alzheimer’s dementia. Research has shown that cut-off scores
between 23 and 26 provide good sensitivity and specificity for identifying MCI. Ad-
ditionally, it is recommended to add one point to the total score for individuals with
12 or fewer years of education to account for educational background.

• The Addenbrooke’s Cognitive Examination III (ACE-III) [33,34] is a thorough cognitive
screening tool that evaluates several cognitive functions, including memory, language,
attention, and visuospatial skills. It is commonly used by healthcare providers, es-
pecially neurologists and geriatricians, to detect and track cognitive impairments.
The ACE-III assesses five cognitive domains: attention and orientation, memory, ver-
bal fluency, language, and visuospatial abilities, with tasks and questions resulting
in a maximum score of 100. A higher score reflects better cognitive performance,
while lower scores may indicate cognitive decline. The ACE-III also incorporates ele-
ments from the Mini-Mental State Examination (MMSE) [35,36], another widely used
cognitive screening test that assesses orientation, memory, attention, language, and
visuospatial skills. The MMSE score ranges from 0 to 30, with lower scores suggesting
more severe cognitive impairment.

• The Trail Making Test (TMT) is one of the most commonly used neuropsychological test
in clinical practice. It was originally developed to measure divided attention [37]. Part
A of the TMT (TMT-A) evaluates attention, visual scanning, eye–hand coordination,
and processing speed, while Part B (TMT-B) focuses more on the ability to switch
between different cognitive sets [38,39]. These cognitive processes are essential for
executive functioning [40,41].

• The Boston Naming Test (BNT) is a confrontation naming assessment commonly
used in clinical settings to identify mild word-retrieval difficulties in individuals with
aphasia, brain injuries, or dementia [42,43].

• The verbal fluency test evaluates an individual’s capacity to quickly generate words
based on a given criterion, such as starting with a specific letter (e.g., H, S, or A) or
belonging to a particular semantic category (e.g., animals, fruits, objects). These tests
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challenge several cognitive processes, and difficulties or errors during the task may
indicate impairments in various areas, including attention, working memory, semantic
memory, executive function, and language skills. Specifically, attention is required
to stay focused on the task, working memory helps to keep track of words already
said, semantic memory provides access to vocabulary and knowledge, and executive
functioning is crucial for organizing thoughts and adhering to the task rules. As a
result, verbal fluency test is a valuable tool in assessing cognitive flexibility, retrieval
efficiency, and overall language function, often used in diagnosing or monitoring
conditions like dementia, brain injury, or other neurological disorders [40,44].

• The Functional Cognitive Assessment Scale (FUCAS) was administered to assess
executive cognitive function in ADL [45].

• The Hamilton Depression Scale (HAM-D) was used to evaluate the current emotional
state [46].

2.4. Statistical Analysis

Demographic characteristics (age, sex, education) and clinical data (stroke laterality,
NIHSS, mRS, BI) were used as predictors. Dependent variables were the following cognitive
measures: MMSE, MoCA, ACE-III, TMT-A, TMT-B, BNT, Fluency Semantic, Fluency
Phonemic, and FUCAS. The Generalized Linear Mixed Model (GLMM) analysis was
applied ten times, once for each dependent variable. In all ten analyses, the same seven
independent variables were used. The seventeen variables are shown in Table 1, along
with their descriptive statistics. For the dependent variables MMSE, MoCA, ACE, and
HAMILTON, which are categorical variables with two categories, the Binary Logistic
model type was used. For the variables TMT-A, TMT-B, BNT, Fluency Semantic, Fluency
Phonemic, FUCAS, and HAM-D, the Gamma model with a log link was used. The last
choice was made because these variables did not follow either the normal distribution or
the Poisson distribution, and the data exhibited overdispersion. The Gamma model with a
log link was preferred over the Negative Binomial model because, in all cases, it yielded
lower values for the Akaike Corrected (AICc) and Bayesian Information Criterion (BIC),
indicating better model fit to the data. All statistical analyses were performed using the
SPSS statistical package (version 25.00), with a significance level set at p < 0.05.

Table 1. Descriptive statistics for independent and dependent variables at time points 0 and 1.

Variables
TIME

t0 t1

In
de

pe
nd

en
t

Age (yrs) 63.01 ± 11.89

Education (yrs) 8.36 ± 5.13

Sex
M (n) 45

F (n) 24

Hemisphere
L (n) 33

R (n) 36

NIHSS 4.67 ± 3.85 1.17 ± 1.43

mRS 2.45 ± 1.5 1.01 ± 1.08

BI 86.45 ± 21.34 92.83 ± 14.05

D
ep

en
de

nt MMSE
Imparment (n) 21 20

No impairment (n) 48 49

MoCA
Imparment (n) 53 49

No impairment (n) 16 20
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Table 1. Cont.

Variables
TIME

t0 t1

D
ep

en
de

nt

ACE-III
Imparment (n) 60 53

No impairment (n) 9 16

HAM-D
Depression 25 26

No depression (n) 44 43

TMT-A (s) 232.52 ± 206.56 169.25 ± 176.56

TMT-B (s) 337.87 ± 191.13 303.38 ± 195.06

BNT 37.26 ± 12.95 38.49 ± 13.05

Fluency semantic 29.22 ± 13.84 31.96 ± 13.39

Fluency phonemic 18.62 ± 12.54 19.72 ± 12.99

FUCAS 48.57 ± 15.78 47.68 ± 14.21
Notes. t0 = time 0 (baseline, acute phase); t1 = time 1 (follow-up, 6 months post-stroke); yrs = years;
n = number of patients; M = male; F = female; L = left; R = right; NIHSS = National Institutes of Health Stroke Scale;
mRS = modified Rankin Scale; BI = Barthel Index; MMSE = Mini-Mental State Examination; MoCA = Montreal
Cognitive Assessment; ACE-III = Addenbrooke’s Cognitive Examination-III; HAM-D = Hamilton Depression
Scale; TMT-A = Trail Making Test-part A; TMT-B = Trail Making Test-part B; s = seconds; BNT = Boston Naming
Test; FUCAS = Functional Cognitive Assessment Scale.

Our analysis shows higher predictive accuracy compared to models by other re-
searchers, who either reported lower accuracy rates or did not provide specific percentages
for comparison. One of the key strengths of our approach is the use of models, which allows
us to assess the simultaneous impact of multiple factors on the dependent variable. In
these models, we can identify which factors genuinely influence the dependent variable by
accounting for other variables simultaneously. This leads to a more accurate understanding
of the true relationship between the dependent variable and the factors in question. In
contrast, univariate approaches such as t-Tests, ANOVA, or simple correlations evaluate
each factor in isolation, which can result in oversimplified or misleading conclusions [47].
Furthermore, by analyzing multiple variables at once, Mixed Models approaches reduce
the risk of multiple comparisons and the increased likelihood of a Type I error, which often
arises when performing numerous univariate tests. This is a common issue in public health
research, where Type I error rates frequently exceed the traditional 5% threshold [48].

3. Results

Table 1 presents the descriptive statistics for all the variables used in the ten anal-
yses (distinguishing between independent and dependent variables). The variables are
shown in the form (categorical or continuous) in which they were used in the statistical
analyses and are presented separately for the time points 0 and 1. For categorical variables,
the frequency is shown, while for continuous variables, the mean (±standard deviation)
is presented.

Table 2 presents the results for the four categorical dependent variables. For the MMSE,
the probability of “no impairment” increases as education increases (p < 0.001). Similarly, for
the MoCA, the probability of “no impairment” increases with higher education (p = 0.002).
For the ACE-III, the probability of “no impairment” increases with decreasing age (p = 0.017),
higher education (p = 0.001), and decreasing mRS (p = 0.012). For the HAM-D, the probability
of being without depression increases in males, and as the education increases (p = 0.01) and
BI score increases (p < 0.001). The accuracy of the models (percentage of successful predictions)
ranges from 87.7% to 95.7%.
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Table 2. Summary of model coefficients (b), p-values and models’ accuracy for the categorical
dependent variables.

Dependent
Variable MMSE MoCA ACE-III HAM-D

Reference category Impairment Impairment Impairment Depression

Model No impairment No impairment No impairment No depression

Model Term b p b p b p b p

Age 0.083 0.521 −0.278 0.086 −0.290 0.017 0.093 0.386

Sex = 1 (M) 4.220 0.220 1.121 0.748 −2.674 0.303 9.917 0.000

Sex = 2 (F) 0.000 N/A 0.000 N/A 0.000 N/A 0.000 N/A

Education 1.639 0.000 1.265 0.002 0.912 0.001 0.624 0.010

NIHSS t0 −0.738 0.620 −0.323 0.565 0.378 0.270 1.080 0.336

mRS t0 −1.743 0.597 −2.961 0.164 −3.416 0.012 3.288 0.108

BI t0 0.232 0.281 0.025 0.828 −0.027 0.701 0.604 0.000

Hem = 1 (L) −1.377 0.690 1.156 0.735 −0.476 0.838 −1.050 0.674

Hem = 2 (R) 0.000 N/A 0.000 N/A 0.000 N/A 0.000 N/A

Model’s
accuracy 94.2% 95.7% 94.9% 87.7%

Notes. M = male; F = female; L = left; R = right; NIHSS = National Institutes of Health Stroke Scale; mRS = modified
Rankin Scale; BI = Barthel Index; t0 = time 0 (baseline, acute phase); MMSE = Mini-Mental State Examination;
MoCA = Montreal Cognitive Assessment; ACE-III = Addenbrooke’s Cognitive Examination-III; HAM-D = Hamilton
Depression Scale; N/A: not applicable. Bold p-values correspond to significant predictors at p < 0.05.

Table 3 presents the results for the six continuous dependent variables. TMT-A in-
creases in females (p = 0.009), as well as with increasing age (p < 0.001), higher education
(p < 0.001), increasing mRS (p < 0.001), and decreasing BI (p = 0.034). TMT-B increases
with increasing age (p < 0.001), higher education (p < 0.001), decreasing NIHSS (p = 0.005),
and increasing mRS (p < 0.001). BNT increases with higher education (p < 0.001). FUCAS
increases with increasing age (p = 0.008) and higher education (p = 0.001). Negative coeffi-
cients were observed for education in relation to TMT-A and FUCAS scores, indicating that
higher educational levels were associated with reduced completion times in TMT-A and
lower FUCAS scores. This suggests that individuals with higher education may exhibit
better processing speed (TMT-A) and functional outcomes (FUCAS), potentially due to
increased cognitive reserve and better coping mechanisms. Fluency Semantic increases
with decreasing age (p = 0.014) and higher education (p = 0.003) and Fluency Phonemic
increases with higher education (p < 0.001). The performance of the models (correlation
between actual and predicted values) ranges from 88.9% to 98%.

Table 3. Summary of model coefficients (b), p-values, and models’ accuracy for the continuous
dependent variables.

Dependent Variable TMT-A TMT-B BNT Fluency Semantic Fluency Phonemic FUCAS

Model Term b p b p b p b p b p B p

Age 0.019 0.000 0.019 0.000 −0.004 0.188 −0.009 0.014 −0.005 0.317 0.005 0.008

Sex = 1 (M) −0.415 0.009 −0.074 0.558 0.074 0.248 −0.013 0.908 −0.058 0.686 −0.041 0.391

Sex = 2 (F) 0.000 N/A 0.000 N/A 0.000 N/A 0.000 N/A 0.000 N/A 0.000 N/A

Education −0.071 0.000 −0.083 0.000 0.036 0.000 0.033 0.003 0.067 0.000 −0.007 0.001

NIHSS t0 −0.043 0.050 −0.029 0.005 −0.003 0.577 0.005 0.582 0.001 0.925 −0.002 0.470

mRS t0 0.272 0.000 0.153 0.000 −0.017 0.356 −0.051 0.084 −0.050 0.096 0.013 0.077

BI t0 −0.011 0.034 −0.004 0.277 −0.000 0.837 0.003 0.237 0.003 0.329 −0.001 0.268
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Table 3. Cont.

Dependent Variable TMT-A TMT-B BNT Fluency Semantic Fluency Phonemic FUCAS

Hem = 1 (L) 0.082 0.547 −0.040 0.731 0.002 0.977 −0.107 0.265 −0.030 0.834 0.069 0.128

Hem = 2 (R) 0.000 N/A 0.000 N/A 0.000 N/A 0.000 N/A 0.000 N/A 0.000 N/A

Model’s accuracy 94% 91.4% 98% 88.9% 98% 88.9%

Notes. M = male; F = female; L = left; R = right; NIHSS = National Institutes of Health Stroke Scale; mRS = modified
Rankin Scale; BI = Barthel Index; TMT-A = Trail Making Test-part A; TMT-B = Trail Making Test-part B; BNT = Boston
Naming Test; FUCAS = Functional Cognitive Assessment Scale; N/A: not applicable. Bold p-values correspond to
significant predictors at p < 0.05.

Model Accuracy

The results of the statistical analysis demonstrated high model accuracy across both
categorical and continuous dependent variables, indicating that the models were well-fitted to
the data. For the categorical variables, the models achieved a high level of accuracy, ranging
from 87.7% to 95.7%. Specifically, the predictor variables, including education, age, and
mRS scores, were significant factors influencing cognitive impairment outcomes. Specifi-
cally, the results indicated the importance of educational attainment in cognitive functioning.
Similarly, the Gamma models used for the continuous dependent variables demonstrated
robust accuracy, with the models’ performance ranging from 88.9% to 98%, suggesting that
the selected predictor variables, such as age, education, and mRS, were highly predictive of
these outcomes. Overall, the high accuracy rates indicate that the models used in this study
provided reliable predictions of both categorical and continuous outcomes. The consistent
impact of key variables like education, age, and mRS across different cognitive measures
reinforces their role as important determinants of cognitive performance.

4. Discussion
4.1. Overall Value and Clinical Utility of the Predictive Model

In this study, a longitudinal analysis using GLMM was conducted to identify predictive
markers of cognitive recovery and post-stroke depression in IS patients. We identified
both demographic and clinical markers that predict cognitive outcomes and post-stroke
depression six months following IS. The present study introduces a predictive model for
cognitive and emotional outcomes in ischemic stroke (IS) patients that integrates a variety
of demographic, clinical, and functional predictors. This model surpasses the limitations
of univariate or simpler multivariate models, which often assess individual risk factors in
isolation. By using a comprehensive approach that combines key predictive markers—such
as age, education, stroke severity, and functional status—our model achieves high accuracy
(87.7% to 98%) across both categorical and continuous outcomes. This level of accuracy
indicates that the model is well-suited for application in clinical settings, offering healthcare
providers a reliable tool to predict long-term recovery trajectories.

4.2. Influence of Key Predictive Markers Within the Model

While the model’s strength lies in its integration of multiple factors, individual predic-
tors provide essential contributions. Here, we briefly summarize the roles of demographic
and clinical markers, highlighting how each variable contributes to the model’s overall
predictive power.

4.2.1. Demographic Markers

Demographic factors, such as age, education, and sex, are key predictors of post-stroke
outcomes and significantly contribute to the model’s predictive strength by capturing
individual differences in baseline resilience and cognitive reserve.

Age emerged as a significant factor in various outcomes. For the categorical outcome
ACE-III, younger age was associated with a higher probability of no impairment. Previous
research [49] compares the ACE and MoCA tests, noting that both are useful for detecting
cognitive impairments, with the ACE showing strong sensitivity for amnestic impairments.
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This sensitivity could support our finding, as younger individuals, who typically have
better memory and faster processing speeds, may have a higher likelihood of showing no
impairments. However, the study does not specifically address age as a factor. Similarly,
Blackburn [19] highlights the sensitivity of the ACE in detecting cognitive impairment in
post-stroke patients, suggesting that many impairments are missed by other tests, like the
MMSE. However, these studies do not focus on age, but the overall findings align with
our research, suggesting that younger individuals may have fewer cognitive impairments
detectable by the ACE.

In continuous outcomes, older age was linked with worse performance (increased
time) on both TMT-A and TMT-B, indicating slower processing speed and impaired mental
flexibility/executive function. These findings are in accordance with previous research [50],
which found that in a sample of 70-year-old men, cognitive function as measured by TMT-B
was a strong predictor of future brain infarction, independently of other factors such as
education and social status. Shao [18] also observed significantly longer completion times
and more errors on both TMT-A and TMT-B among mild stroke patients compared to
controls. The correlation between TMT performance and global cognition highlights the
sensitivity of these tasks in detecting cognitive decline, particularly executive dysfunction.
The findings strongly parallel the effects of aging, further supporting the link between
older age and reduced cognitive performance on these tasks.

Age also negatively influenced Fluency Semantic, suggesting reduced language-
related cognitive function as age increases. This finding is well-supported in the literature.
Verbal fluency tasks, which measure both verbal ability and executive function, rely on
various cognitive processes, including attention and cognitive flexibility, functions that
decline with age due to the deterioration of frontal brain regions [51]. This aligns with our
finding, as the loss of executive control over word retrieval can explain reduced fluency in
older individuals. Brady [52] further supports that age is consistently associated with a
decline in cognitive functions, particularly verbal fluency, which is also affected by stroke
risk factors. Brady’s findings further indicate that the decline in fluency due to aging
mirrors similar declines in memory and visuospatial performance, pointing to a broad
cognitive deterioration linked to age. Together, these studies support the idea that aging
leads to reduced fluency and language-related cognitive functions.

Sex influenced several outcomes, with notable effects in HAM-D and TMT-A. For the
HAM-D scale, males were more likely to be categorized as “normal” compared to females.
This finding aligns with evidence from several studies examining sex differences in PSD.
Volz [53] et al. found that women had higher PSD prevalence and severity shortly after
stroke, though these differences diminished over time, disappearing within six months.
Dong et al. [54] similarly noted that women were more likely to have a history of depression
and be on medication for depression at the time of stroke, but no significant sex differences
in PSD were observed 90 days post-stroke after adjusting for sociodemographic factors.
Mayman et al. [55] further supported this by showing that women had a 20% higher risk of
developing PSD than men, with this risk persisting even 1.5 years post-stroke. These studies
suggest that women exhibit more severe or prolonged depressive symptoms post-stroke,
which may explain their lower likelihood of being categorized as “normal” on the HAM-D
scale compared to men.

For TMT-A, females had significantly longer completion times than males, indicating
slower processing speeds among females. This finding is supported by some existing
literature while remaining underexplored in other studies. Roivainen et al. [56] reviewed sex
differences in processing speed and found that while females perform faster on language-
related tasks, males tend to perform better on tasks requiring motor speed and reaction
time, such as TMT-A, aligning with our observation of slower completion times for females.
Shao et al. [18] further support the sensitivity of TMT-A in detecting slower processing
speeds, particularly in stroke patients, though the study does not specifically address
sex differences. Shao’s research emphasized that both processing speed (TMT-A) and
cognitive flexibility (TMT-B) were impaired in stroke patients, reinforcing the idea that
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slower cognitive and motor processing speeds can be captured by these tasks. However,
Wiberg et al. [50] primarily focused on cognitive function and its link to stroke risk without
addressing sex differences, leaving a gap in the exploration of sex-specific outcomes in
TMT performance.

Education was a consistently strong predictor across multiple outcomes. Higher
levels of education were associated with a greater likelihood of no impairment in MMSE,
MoCA, and ACE-III. This result is supported by several studies. Pendlebury et al. [49]
highlighted that both the MoCA and ACE were sensitive tools for measuring cognitive
outcomes, particularly in amnestic impairments, and that these tools can be useful for
patients with varying educational backgrounds, given that educated individuals may
possess stronger cognitive reserve that enhances their ability to perform well on such
assessments. Another study [57] further supports this finding, noting that lower education
was independently associated with non-feasibility of MoCA testing in acute stroke patients,
indicating that individuals with higher education were more likely to complete the MoCA
without cognitive impairment being detected. Researchers [4] also emphasized that MoCA
is more sensitive than the MMSE for detecting cognitive impairment post-stroke, and
education was identified as a key factor influencing cognitive test performance, supporting
the link between higher education and better outcomes on these cognitive screening tools.
Similarly, Pasi et al. [58] found that low education levels were a significant predictor
of poorer MoCA performance, reinforcing the idea that higher educational attainment
improves cognitive outcomes post-stroke. In contrast, Blackburn et al. [19] highlighted
the ACE sensitivity in detecting cognitive impairments in post-stroke settings but did
not address the role of education. Cova et al. [59] focused on age and cognitive deficits
as predictors of cognitive decline, while other researchers [11,50] emphasized cognitive
recovery without exploring the impact of education.

Education also influenced performance on BNT, Fluency Semantic, and Fluency Phone-
mic, highlighting the role of education in preserving language and executive cognitive
processes after stroke. This observation highlights the role of education in preserving
cognitive function after stroke and is supported by several studies. Fishman et al. [51]
noted that verbal fluency tasks are influenced by vocabulary knowledge, which is highly
associated with level of education [60]. Additionally, Brady at al. [52] found that although
age and stroke risk contribute to declines in verbal fluency, education was a protective
factor, mitigating some of the effects of stroke and aging on cognitive function. Higher
education was associated with better outcomes in fluency tasks, emphasizing its role in
maintaining cognitive function after stroke.

Finally, lower education was associated with worse performance on both TMT-A and
TMT-B. Previous research [38,61] showed that performance on TMT, especially part B, was
significantly influenced by education, with lower education levels being associated with
worse outcomes in both healthy individuals and stroke patients. This reinforces our finding
that lower education contributes to worse TMT performance. Shao et al. [18] also found that
completion times for both TMT-A and TMT-B were significantly longer in stroke patients
compared to controls, reflecting impairments in processing speed and cognitive flexibility.
Although Shao et al. did not specifically focus on education, the correlation between
TMT performance and global cognition suggests that individuals with lower cognitive
reserve, potentially linked to lower education, may struggle more with these tasks. On
the other hand, Wiberg et al. [50] examined cognitive function as measured by TMT-B
and its predictive value for brain infarction but did not detect an influence of education
on the results. The inverse relationship between education and performance times on
TMT-A, as well as lower FUCAS scores, underscores the role of educational attainment
as a factor that may enhance cognitive flexibility and functional adaptation post-stroke.
These results support the hypothesis that individuals with higher education can draw on a
greater cognitive reserve, facilitating more efficient cognitive processing and resilience in
recovery contexts [19,62]. The study emphasized the role of subcortico-frontal activities
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in predicting brain infarction, independent of education or social factors, suggesting that
other variables might play a more prominent role in TMT performance in their cohort.

4.2.2. Clinical Markers

Clinical markers of stroke severity and functional status—such as NIHSS, mRS, BI,
and stroke laterality—play a vital role in predicting both cognitive and emotional recovery.
These factors enable the model to assess the broader impact of the stroke on a patient’s
recovery potential and functional independence.

The NIHSS score, a measure of stroke severity, was a significant predictor for TMT-B,
with lower NIHSS scores predicting better performance. However, NIHSS did not signif-
icantly predict outcomes for other neuropsychological testing. The connection between
lower NIHSS scores and better performance on TMT is well-supported. Research has shown
that both TMT-A and TMT-B are significantly correlated with stroke severity, with lower
NIHSS scores linked to better performance, suggesting that less severe strokes allow for bet-
ter cognitive flexibility [63]. Similarly, baseline NIHSS scores have been identified as strong
predictors of stroke outcomes, where lower scores correlate with better cognitive recovery,
further supporting the relationship between stroke severity and TMT performance [64].
Impairments in processing speed and cognitive flexibility are commonly observed in stroke
patients, indicating that more severe strokes would impair these abilities, even though not
all studies directly examine NIHSS scores in this context [18].

The mRS score, which measures the degree of disability or dependence after stroke,
was significantly related to multiple outcomes. A lower mRS score, indicating better
functional recovery, was associated with no impairment in ACE-III. Higher mRS scores
were associated with worse performance on TMT-A and TMT-B, reflecting the influence of
functional disability on cognitive processing and executive function. Previous research has
shown that lower mRS scores are linked with better cognitive performance and functional
independence, reinforcing the connection between functional recovery and cognitive out-
comes [65]. The sensitivity of the ACE in detecting cognitive impairments, particularly in
the non-acute post-stroke setting, suggests that better functional recovery is likely to lead
to better performance on ACE [49]. Furthermore, longer completion times on TMT-A and
TMT-B have been shown to reflect impairments in processing speed and cognitive flexibility
in stroke patients, which aligns with the finding that higher mRS scores, indicating worse
functional recovery, lead to worse performance on these tasks [18]. Although some studies,
such as those by Wiberg [50], did not explore functional recovery, the overall evidence
supports the idea that lower mRS scores contribute to better cognitive outcomes on tests
like ACE and TMT-A and TMT-B.

The BI, which assesses the patient’s ability to perform activities of daily living, was a
significant predictor for HAM-D, with higher BI scores associated with normal scores on
the depression scale. It also had a marginal impact on TMT-A, suggesting a link between
physical and cognitive recovery. Research has shown that functional recovery, as measured
by the BI, is a strong predictor of both physical and cognitive recovery in stroke patients.
Higher BI scores are linked to better cognitive outcomes and greater independence in
ADL [66,67], which aligns with our findings that higher BI scores predict better HAM-
D outcomes. Similarly, it has been found that physical recovery, as reflected in higher
BI scores, can also influence cognitive performance, such as faster completion times on
TMT-A, which measures processing speed [68]. This suggests that physical and cognitive
recovery are interconnected, supporting our observation of the link between BI scores
and cognitive outcomes. While other researchers [46,52] focus more on PSD and cognitive
impairment, they emphasize how stroke severity and functional deficits predict poorer
outcomes, indirectly supporting the idea that better functional recovery is associated with
improved cognitive and emotional outcomes in stroke patients [69,70].

Stroke laterality did not significantly influence the examined outcomes. Previous stud-
ies found no significant differences in cognitive outcomes, such as MMSE scores, between
patients with left or right hemisphere lesions, suggesting that the affected hemisphere
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may not play a critical role in overall cognitive recovery [71]. Similarly, a study examining
hemispheric lateralization in stroke outcomes found no significant difference between right
and left hemisphere stroke patients in terms of 90-day functional outcomes, including
modified Rankin Scale (mRS) scores and mortality [72]. The HERMES meta-analysis also
concluded that stroke lateralization did not significantly modify outcomes, further reinforc-
ing the idea that the hemisphere affected by the stroke does not strongly influence recovery
outcomes [73]. More detailed evaluations of brain structural and functional networks (e.g.,
using neuroimaging techniques such as diffusion tensor imaging and functional magnetic
resonance imaging) may be necessary to further evaluate the predictive of baseline brain
integrity with regard to cognitive and emotional outcome.

4.3. Strengths and Limitations

The study presents several strengths and limitations. One of its key strengths is the
longitudinal design, which allows for the tracking of recovery over time, providing a
clearer understanding of both short-term and long-term outcomes. Additionally, the use
of comprehensive neuropsychological assessments ensures that a wide range of cognitive
domains, such as memory, attention, and executive function, are thoroughly evaluated. The
inclusion of both cognitive screening measures, individual cognitive tests, and functional
cognitive assessment scales, as well as emotional inventories, adds depth to the analysis by
addressing not only cognitive but also emotional recovery. Furthermore, the high model
accuracy (ranging from 87.7% to 98%) highlights the reliability of the chosen predictors,
such as age, education, and the modified Rankin Scale (mRS), in forecasting recovery
outcomes. By leveraging multivariate analysis, our study offers a more robust and accurate
model for predicting outcomes, reducing error rates, and providing a comprehensive
understanding of the key predictive factors.

However, the study also has some limitations. The sample size and population are
confined to Greek-speaking patients with IS, which may reduce the generalizability of the
results to other populations, including patients with hemorrhagic stroke, which was not
included in the present study. In addition, the exclusion of patients with severe aphasia
or other neurological conditions limits the applicability of the findings to a broader stroke
population, particularly those with more severe impairments. Furthermore, considering the
acute phase of the IS during which the neuropsychological evaluation took place, an indi-
vidual test of verbal/visual learning/memory was not administered to minimize patient’s
fatigue. The limited follow-up duration is another limitation, as more long-term follow-up
evaluations could provide valuable insights into the sustainability of the predictive model
over time. Another limitation of our study is the lack of assessment of bilingualism among
participants. Bilingualism can influence cognitive recovery in stroke patients, especially
in language processing and executive function. Since we did not specifically evaluate or
control for bilingualism, this may introduce variability in our cognitive recovery findings.
Future studies should consider including bilingualism as a variable. Additionally, we did
not collect data on handedness or brain lateralization at baseline or follow-up. These factors
can impact cognitive and motor recovery depending on stroke hemisphere. Future research
incorporating these variables could provide deeper insights into their role in post-stroke
recovery. Finally, while the predictive accuracy of our models was high within this sample,
the homogeneity of the Greek-speaking ischemic stroke population may have contributed
to this outcome. Applying the model to more diverse and heterogeneous samples could
further validate its predictive value and offer insights into factors that may influence ac-
curacy across varied populations. Future studies should aim to replicate and test these
models in broader cohorts, including patients with different stroke types and backgrounds,
to confirm the model’s generalizability and robustness.

4.4. Clinical Implications and Further Research

The results of the present study can be valuable not only for the diagnostic process of
patients with IS but also for their ongoing monitoring and the adaptation of appropriate
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therapeutic interventions throughout the rehabilitation phase. The use of specific neuropsy-
chological tests with predictive value can significantly contribute to a multidisciplinary
approach to IS care, offering essential data for tracking recovery progress. Such assess-
ments can inform healthcare teams about post-stroke cognitive and emotional statuses early
on, allowing for tailored rehabilitation strategies that align with individual patient needs.
Moreover, rehabilitation centers can integrate these findings into their protocols, enhancing
the effectiveness of treatment by providing structured, evidence-based data that emphasize
the importance of interdisciplinary collaboration. By incorporating neuropsychological
evaluations with proven prognostic value, healthcare professionals can more accurately
predict recovery outcomes and adjust their interventions accordingly, ultimately improving
patient care and long-term functional independence. This holistic approach, which com-
bines neuropsychological assessment and interdisciplinary efforts, reinforces the role of
collaboration between neurologists, neuropsychologists, psychologists, physiotherapists,
and other healthcare professionals in optimizing stroke rehabilitation outcomes.

Further research should focus on validating these findings across more diverse popu-
lations and extending follow-up periods to better assess long-term recovery patterns and
refine the predictive models for broader clinical applicability. This will help in developing
more standardized neuropsychological assessments and rehabilitation approaches tailored
to individual patient profiles.

5. Conclusions

This study identified education and age as the strongest predictors of cognitive recovery
in IS patients, with higher education levels consistently linked to better outcomes, while
functional status played a critical role in predicting both cognitive performance and emo-
tional well-being (i.e., PSD). The predictive models used in the analysis demonstrated high
accuracy, with performance rates ranging from 87.7% to 98%, underscoring the reliability of
these variables in forecasting recovery outcomes. These findings emphasize the importance
of considering patients’ demographic profile and integrating functional, cognitive and emo-
tional rehabilitation strategies to optimize post-stroke recovery, and also suggest the need
for further studies with diverse populations and longer follow-up durations to enhance the
generalizability and long-term applicability of the predictive models.
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