
 

Revista Internacional de Psicología 

ISSN 1818-1023                                

www.revistapsicologia.org 

Centro de Investigación sobre 

Desarrollo Humano y Sociedad 

Vol.15 No.1 

Enero 2016 

 

Desarrollo del sistema nervioso humano. Perspectiva general del estadio prenatal 

hasta 2013 

Development of the nervous system in humans. Overview of the prenatal stage 

until 2013 

 

Profª. Dra. Paloma Rohlfs Domínguez  

Universidad de Extremadura (UNEX) 

 

Nota sobre la autora 

 

Profª. Dra. Paloma Rohlfs Domínguez. Dpto. de Psicología y Antropología, 

Universidad de Extremadura; Dpto. de Psicología Clínica, Experimental y Social, 

Universidad de Huelva; Dpto. de Psicología Social y Metodología del Comportamiento, 

y Facultad de Magisterio, ambas de la Euskalherriko Univertsitatea-Universidad del País 

Vasco.  

Esta investigación fue realizada en el contexto contractual de la autora con la UNEX, 

sin financiación adicional.   

Cualquier duda sobre este artículo podrá ser remitida a la segunda autora, a la 

siguiente dirección postal: Universidad de Extremadura. Facultad de Formación del 

Profesorado, Avda. de la Universidad s/n, 10003, Cáceres (España) o a la siguiente 

dirección de correo electrónico: palomaroh@unex.es 

Recibido:23/9/2015 

Aceptado:8/1/2017 

 

 Revisado por: 

Humberto Emilio Aguilera Arévalo, Ph.D. 

Dra. María Guadalupe Ramírez Contreras 

Mtro. Jonny Alexander Cruz Bolaños 

 



Revista Internacional de Psicología                                                                                             Vol.15 No.1  

www.revistapsicologia.org                                                                                                            Enero 2016 

ISSN 1818-1023                                          Centro de Investigación sobre Desarrollo Humano y Sociedad                                                                                   

2 

 

Resumen 

El estudio del origen y desarrollo del sistema nervioso humano es imprescindible 

para combatir los trastornos del desarrollo y las enfermedades neurodegenerativas. Por 

esta razón, la presente monografía tiene como objetivo revisar el estado actual de esta 

cuestión, centrándose específicamente en la fase prenatal de tal desarrollo. De acuerdo 

con este objetivo, se llevó a cabo una búsqueda electrónica entre 2003 y 2013 de literatura 

científica publicada en las bases de datos Academic Search Complete, Medline y Science 

Direct, incluyendo las siguientes palabras clave: desarrollo ontogenético, sistema 

nervioso humano y fase prenatal. A la luz de esta revisión, se concluye que en el origen 

y desarrollo prenatal del sistema nervioso humano están implicados toda una serie de 

eventos ontogenéticos perfectamente orquestados, que tienen lugar desde la fecundación 

del óvulo hasta el nacimiento del individuo. Estos eventos se pueden presentar de manera 

sucesiva, o bien de manera superpuesta. Se trata específicamente de los siguientes 

eventos: transformación del zigoto; neurulación primaria; neurogénesis; migración 

neuronal; agrupamiento neuronal; sinaptogénesis, mielinización y poda axónica. Además, 

se concluye que existen al menos dos cuestiones que ya no suscitan debate científico. El 

primero es sobre el hecho de que el origen y desarrollo prenatal del sistema nervioso 

humano muestra un patrón estereotipado. El segundo se refiere a que la acción combinada 

de la influencia externa (medio ambiente) e interna (genética) determina dicho patrón de 

desarrollo. Finalmente, se recomienda invertir un mayor esfuerzo investigador en el 

futuro en dilucidar varias cuestiones relativas a la migración neuronal y a la 

reorganización sináptica posterior a la poda axónica.              

Palabras clave: sistema nervioso, desarrollo prenatal, migración neuronal, 

sinaptogénesis, mielinización, poda axónica.   
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Abstract 

The study the origin and development of the nervous system in humans has gained 

increasing attention since its understanding is useful in the treatment of developmental 

disorders and neurodegenerative diseases. We aimed to review its current status, focusing 

on the prenatal stage. We searched papers from 2003 to 2013 in academic data-bases such 

as Academic Search Complete, Medline, and Science Direct, including the following 

keywords: ontogenetic development, human nervous system and prenatal stage. We 

conclude that a series of perfectly orchestrated ontogenetic events, which take place from 

fecundation of the ovum to the birth of the individual, are involved in the origin and 

prenatal development of the human nervous system. These events may occur either 

successively or in an overlapping manner. These events are the following: transformation 

of the zygote; primary neurulation; neurogenesis; neuronal migration; neuronal 

clustering; synaptogenesis; myelination and synaptic pruning. Moreover, we conclude 

that there are at least two issues that no longer spark scientific debate. The first one refers 

to the fact that the origin and prenatal development of the human nervous system shows 

a stereotyped pattern. The second one is about that the combined action of external 

(environment) and internal (genetics) influences determine the pattern of development. 

We recommend to focus on neuronal migration and synaptic reorganization after axonal 

pruning. 

Keywords: nervous system, prenatal development, neural migration, 

synaptogenesis, myelination, axonic pruning. 
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Introducción 

El desarrollo ontogenético del sistema nervioso humano describe el desarrollo de 

éste desde el momento de la fertilización del óvulo, pasando por su desarrollo 

embrionario-fetal y postnatal, hasta la vida adulta. Se trata de un proceso especialmente 

delicado y complejo, pues su misión última consiste en lograr el establecimiento y 

mantenimiento eficaz de toda una serie de circuitos neuronales de alta precisión. Si estos 

circuitos se desarrollan con normalidad (sin alteraciones), el individuo podrá 

experimentar y disfrutar plenamente de cualquier tipo de vivencia (pensamiento, 

sentimiento, percepción, o emoción), así como ejecutar con pericia cualquier acción o 

conducta (hablar, andar, o respirar, entre otras). Por esta razón, nos encontramos ante un 

proceso de vital importancia.  

Identificar y producir nuevos conocimientos en este campo es una estrategia clave 

para el tratamiento de los trastornos del desarrollo, como por ejemplo, el autismo, así 

como de enfermedades neurodegenerativas, como por ejemplo, la de Alzheimer o la de 

Parkinson. 

La pregunta de investigación a la que pretender responder este trabajo de revisión 

es cuáles son las últimas evidencias sobre la secuencia de eventos biológicos implicados 

en el origen y desarrollo prenatal del sistema nervioso humano y sobre esos eventos.  

Esta monografía se centra específicamente en discutir el conocimiento actual 

sobre los principales eventos biológicos del origen y del desarrollo ontogenético del 

sistema nervioso humano y su secuencia, centrándose exclusivamente en su fase prenatal, 

a lo que se dedica la práctica totalidad del texto. Este trabajo supone una actualización 

del conocimiento aportado mediante trabajos de investigación publicados entre 2003 y 

2013. Por lo tanto, no se trata de un trabajo longitudinal sobre el desarrollo prenatal del 

sistema nervioso humano, sino una descripción del tema, realizada de literatura 
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especializada. El manuscrito culmina con la presentación de una serie de conclusiones 

sobre la temática que nos ocupa, así como de recomendaciones sobre futuras 

aportaciones.  

Hasta la fecha no se ha publicado un artículo de estas características sobre esta 

temática en castellano. De hecho, aunque en el pasado ya se descubriera la ocurrencia de 

cada uno de los eventos ontogenéticos aquí tratados, y por lo tanto, se identificara su 

secuencia, no se ha dedicado un espacio editorial a publicar una revisión de literatura 

actualizada hasta 2013 sobre ello, por lo que esta aportación brinda la oportunidad de 

cubrir esta brecha. 

Revisión de la literatura 

Origen del sistema nervioso 

El comienzo de la formación del sistema nervioso humano es una única célula 

original, el óvulo fertilizado o zigoto, de la que surgirán todas las células diferenciales 

que configuran el organismo de un individuo, incluidas las neuronas. Mediante sucesivas 

divisiones celulares mitóticas –dos, cuatro, ocho, dieciséis y treinta y dos células-, el 

zigoto se transforma, durante el trayecto que recorre para descender de la trompa de 

Falopio con destino al útero, progresivamente en mórula (Sadler, 2009). Este proceso 

tiene lugar durante los tres primeros días posteriores a la fecundación (Chuva de Sousa 

Lopes y Mummery, 2009). Las células de la mórula son células madre (Strelchenko y 

Verlinsky, 2006); células totipotenciales, es decir, capaces de generar cualquier célula del 

organismo (Mancheño Maciá y Giménez Ribotta, 2005). A continuación, y ya implantado 

el zigoto en el útero, también mediante división mitótica o blastulación, la mórula se 

convierte en blástula, forma embriológica temprana de estructura esférica de una sola 

capa celular rellena de fluido. A este proceso se le denomina blastulación. No obstante, 
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el blastocito temprano, estructura precursora de la blástula final, se forma con anterioridad 

a la implantación del zigoto en el útero (Sadler, 2009) (véase figura 1).  

 

Figura 1  

Divisiones mitóticas de un zigoto de la Lumbriculus Variegatus  

A. Fertilización del óvulo). B-D. Zigoto de 2, 4 y 8 células, respectivamente. E. Zigoto de entre 

16 y 32 células (mórula) (tomadas de Hardin 2005a, con permiso). F. Zigoto en fase de blástula (cortesía 

del Dr. Chuck Ettensohn, de la Universidad Carnegie-Mellon).       

 

A partir de este momento, las células del zigoto pierden progresivamente su rasgo 

de totipotencialidad, y pasan a ser multipotenciales, es decir, capaces de diferenciarse 

sólo en algunos tipos distintos de células (Mancheño Maciá y Giménez Ribotta, 2005). 

Finalmente, determinados movimientos celulares de la blástula, proceso denominado 

como gastrulación, transformarán al zigoto en una gástrula (véase figura 2). 
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Figura 2 

Ampliación microscópica de las fases de la gastrulación embrionaria de la Lumbriculus 

Variegatus  

A-E. Movimientos celulares progresivos, formando la gástrula. F. Gástrula semitardía (cortesía 

del Dr. David McClay, de la Universidad de Duke).  

 

 

La gástrula presenta tres capas de células claramente diferenciadas: ectodermo, 

mesodermo y endodermo, respectivamente (Pinel, 2007) (véase figura 3).  

. 
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Figura 3  

Ampliación microscópica de la gástrula tardía del erizo de mar 

A. Ectodermo. B. Mesodermo y C. Endodermo (adaptada de Hardin, 2005b, y por cortesía del Dr. 

Charles Ettensohn). El erizo de mar es una de las especies en las que se estudió el desarrollo embrionario 

por primera vez (Hardin, 2005b).  

 

Los huesos y la masa muscular se originan desde el mesodermo (Sadler, 2009; 

Long, 2012), y los diferentes órganos, tales como el páncreas, el esófago o el estómago, 

derivan del endodermo (Cheng, Tiyaboonchai y Gaude, 2013). El sistema nervioso y sus 

diferentes estructuras se originan a partir del ectodermo (Kiernan y Rajakumar, 2013). En 

este momento, el zigoto recibe el nombre de gástrula tardía (Beane, Gross y McClay, 

2006), y hablamos de progenitores, en lugar de células multipotenciales, para referirnos 

a las células que lo componen. Los progenitores dan lugar a exclusivamente a células de 

un linaje celular específico de la zona corporal (por ejemplo, de un órgano o músculo) y, 

por lo tanto, de la función que esta zona corporal realiza comúnmente (Mancheño Maciá 

y Giménez Ribotta, 2005).  

Desarrollo embrionario del sistema nervioso 

Primeros eventos embrionarios. El sistema nervioso comienza a formarse 

cuando el embrión tiene aproximadamente dos semanas. En el decimoséptimo día de 

desarrollo, aproximadamente, el ectodermo comienza a sufrir cambios estructurales de 

gran relevancia. En concreto, se produce la emergencia de la placa neural o 
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neuroectodermo a partir del ectodermo, por inducción neural de la notocorda  y del 

mesodermo (véase figura 4). 

 

Figura 4 

Ampliación microscópica de la placa neural y sección transversal de notocorda y mesodermo 

A. Ampliación microscópica de la placa neural emergida a partir del decimoséptimo día de 

desarrollo (cortesía de la Dra. Kathy Sulik, de la Universidad de Carolina del Norte). B. Notocorda y 

mesodermo de la sección transversal de un embrión entre la segunda y la tercera semana de desarrollo 

embrionario, aproximadamente (adaptada de Sadler, 2009).   

 

La inducción es el mecanismo por el que un tejido o estructura, en este caso, el 

ectodermo, se ve forzado a sufrir cambios como consecuencia de la acción de otro/s 

tejido/s o estructura/s, en este caso, la notocorda y el mesodermo.  

En el decimoctavo día de desarrollo aproximadamente, los extremos laterales de 

la placa neural se elevan formando los pliegues neurales, mientras que su porción media 

dará lugar al surco neural. Durante los diez días siguientes, los pliegues de éste se fusionan 

progresivamente formando los primeros vestigios del tubo neural. El tubo neural se 

compone de células madre que  darán lugar tanto a futuras células nerviosas -neuronas- 

como a células gliales (Corr, 2008) (células multifuncionales de apoyo a la función y 

estructura neuronal). El sistema nervioso central deriva del tubo neural (Kiernan y 
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Rajakumar, 2013). Dicha fusión comienza en la zona cervical y continúa hacia las 

regiones cefálica y caudal (Sadler, 2009). A su vez, esta fusión dará lugar a la 

convergencia gradual de la cresta de cada uno de ellos, que culminará en la formación de 

la denominada cresta neural en la zona dorsal del tubo neural. Ésta es una estructura clave 

en el desarrollo del sistema nervioso de los vertebrados (véase figura 5).    

 

Figura 5  

Formación de la cresta neural y ampliación microscópica de un zigoto 

A. Formación de la cresta neural (adaptada de Staveley, 2013). B. Ampliación microscópica de un 

zigoto en el decimoquinto día de desarrollo (adaptada de Hill 2013a, por cortesía de la Dra. Sulik). 

 

Una vez formada la cresta neural, un grupo de células de una vasta variedad de 

tipos, tales como el óseo, el neuronal o el cartilaginoso, migrarán activamente, al menos 

en el ser humano y en el ratón, desde esta zona hacia el mesodermo adyacente (Huang y 
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Saint-Jeannet, 2004; Sadler, 2009; Betters, Liu, Kjaeldgaard, Sundström y García-Castro, 

2010). Un reciente trabajo de revisión -Milet y Monsoro-Burg, 2012- sitúa, sin embargo, 

la migración celular de la cresta neural de algunos vertebrados, por ejemplo de la rana, en 

la fase de gastrulación. En cualquier caso, esta migración celular está implicada, entre 

otras transformaciones del embrión, en el desarrollo de su futuro sistema nervioso 

periférico (Dickinson, Machnicki, Ali, Zhang y Sohal, 2004; Kalat, 2004; Kiernan y 

Rajakumar, 2013).  

La formación del tubo neural alcanza su clímax cuando tanto el neuroporo craneal 

como el caudal, situados en los respectivos extremos superior o anterior e inferior o 

posterior del embrión, se cierran aproximadamente en el vigésimo quinto  y vigésimo 

séptimo día desarrollo, respectivamente (Sadler, 2009) (véase figura 6).   

 

Figura 6 

Ampliación microscópica de ambos neuroporos 

A-B. Neuroporos anterior y posterior, respectivamente, cerrados (cortesía de la Dra. Sulik). C-H. 

Ampliación microscópica de un embrión (cuarta semana de su desarrollo), donde C = mesencéfalo; D = 

prosencéfalo; E = rombencéfalo; F-G =  las regiones cefálica y caudal, respecivamente y H = el cordón 

espinal (adaptada de Hill 2013b, por cortesía de la Dra. Sulik). 
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El cierre del tubo neural, junto con la formación de la cresta neural, es uno de los 

requisitos fisiológicos necesarios para que la migración celular descrita anteriormente 

pueda acontecer (Sadler, 2009).  

Al conjunto de procesos fisiológicos de fusión de los pliegues neurales; formación 

de la cresta y del tubo neural y migración celular de la cresta neural se le denomina 

neurulación primaria.   

A partir del cierre de sendos neuroporos, quedarán determinadas las dos grandes 

divisiones del sistema nervioso central. Por un lado, el extremo anterior o región cefálica 

del tubo neural, que pasará a diferenciarse en otras tres regiones -prosencéfalo, 

mesencéfalo y rombencéfalo- (Lim y Golden, 2007). Por otro lado, la región caudal del 

tubo neural dará lugar al cordón espinal (Fig. 6). Hacia la quinta semana de desarrollo 

embrionario, aproximadamente, el prosencéfalo desarrolla las vesículas telencefálicas, de 

cuyas paredes derivarán los hemisferios cerebrales, y cuyas cavidades acogerán a los 

futuros ventrículos. Asimismo, la cavidad del prosencéfalo dará lugar al diencéfalo con 

tres estructuras claramente diferenciadas: el epitálamo, el tálamo y el hipotálamo.  

Desarrollo prenatal de las neuronas. El origen y progresivo desarrollo de las 

neuronas es un proceso imprescindible, pues está directamente implicado en la formación 

de las diferentes estructuras del sistema nervioso. El desarrollo embrionario de las 

neuronas atraviesa cinco fases superpuestas bien diferenciadas entre sí. En cada una de 

ellas ocurren diversos hitos biológicos que determinan la continuidad del desarrollo 

normal (libre de alteraciones) del sistema nervioso. A continuación, se exponen tales hitos 

biológicos. 

Proliferación neuronal o neurogénesis. Se trata del proceso implicado en la 

generación de nuevas neuronas (Kriegstein y Noctor, 2004; Arias-Carrión, Olivares-

Bañuelos y Drucker-Colín, 2007). En el ser humano, este proceso comienza en el tercer 
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mes de gestación, aproximadamente, y continúa hasta los dos y medio de edad (Semple, 

Blomgren, Gimlin, Ferriero y Noble-Haeusslein, 2013).  

Casi todas las neuronas y células gliales del sistema nervioso proliferan del 

neuroepitelio de las zonas ventricular (ZV) y subventricular (ZSV) del  tubo neural 

(Cavada, 1988; Snell, 2007) del telencéfalo dorsal y ventral, respectivamente (Kriegstein 

y Noctor, 2004). La ZSV incluye tres zonas progenitoras de precursores neuronales 

localizadas en la denominada eminencia ganglionar del telencéfalo ventral, a saber: la 

eminencia ganglionar medial (EGM); la eminencia ganglionar lateral (EGL) y la 

eminencia ganglionar caudal (EGC) (Parnavelas, 2000; Hatten, 2002). Mientras que la 

ZV origina fundamentalmente neuronas, la ZSV produce tanto neuronas como células 

gliales (De Graaf-Peters y Hadders-Algra, 2006). Las neuronas producidas en la ZV son 

de tipo piramidal, es decir, neuronas excitatorias de proyección de la corteza. La ZSV, en 

contraste, origina interneuronas corticales, o sea neuronas inhibitorias no piramidales 

(Parnavelas, 2000; Kriegstein y Noctor, 2004). La ZV es la más tendiente a la 

proliferación neuronal, ya que allí emergen hasta un noventa por ciento de las neuronas 

de la corteza cerebral (Ayala, Shu y Tsai, 2007), la parte más extensa del sistema nervioso 

central de los mamíferos (Parnavelas, 2000; Pinel, 2007; Lossi, Alasia, Salio y Merigui, 

2009; Dicou, 2009). La producción de neuroblastos y glioblastos en la cresta neural daré 

lugar, en cambio, a neuronas y a células gliales del sistema nervioso periférico (Hao, 

Bornstein, Vanden Berghe, Lomax, Young y Foong, 2013). Si bien, la cresta neural puede 

producir células de otros linajes, tales como el óseo, cartilaginoso o el tendinoso, entre 

otros (Le Douarin y Dupin, 2003; Milet y Monsoro-Burg, 2012).     

Algunas células mádre neuroepiteliales del tubo neural, que son originalmente 

totipotenciales, se convierten efectivamente en progenitores neuronales que se 

transformarán en precursores neuronales o neuroblastos (Beltz y Sandeman, 2003; Lossi, 
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Cantile, Tamagno y Merighi, 2005; Corr, 2008). Esto ocurrirá a medida que la 

diferenciación celular progrese. Otras células neuroepiteliales, en cambio, darán lugar a 

progenitores de células gliales que se convertirán en glioblastos (Lossi et al., 2005) y 

posteriormente en neuroglía, astroglía o macroglía del sistema nervioso. Los neuroblastos 

se generan en primer lugar -entre el segundo y el cuarto mes de gestación-, mientras que 

los glioblastos se forman, una vez terminada la formación de neuroblastos -entre el quinto 

mes de gestación y el primer año de vida- (Rivkin, 2000). Estos darán lugar a neuronas 

cuando desarrollen posteriormente sus prolongaciones características -las dendritas y los 

axones-. Las células madre gliales radiales residentes en la ZV y en la ZSV, por su parte, 

son también una fuente importante de precursores neuronales e incluso neuronas 

propiamente dichas (Kriegstein y Álvarez-Buylla, 2009).  

Entre la vigésima y vigésimo cuarta semana de gestación, el embrión está dotado 

del cómputo prácticamente total de neuronas. Esta producción de neuronas varía según el 

momento cronológico del desarrollo embrionario-fetal y según la zona del sistema 

nervioso. Por ejemplo, las células nerviosas de las diferentes láminas de la corteza se 

producen en momentos embrionarios diferentes (Pinel, 2007). Aunque la mayoría de las 

neuronas se generan durante la gestación embrionaria-fetal, otras pueden generarse más 

tarde, incluso durante la edad adulta, como las neuronas del bulbo olfatorio (Luskin, 1993; 

Bédard y Parent, 2004; Arias-Carrión et al., 2007; Cayre, Canoll y Godman, 2009; 

Belvindrah, Nissant y Lledo, 2011) y del giro dentado hipocampal (Snyder, Kee y 

Wojtowicz, 2001; Beltz y Sandeman, 2003; Snyder, Hong, McDonald y Wojtowicz, 

2005; Arias-Carrión et al., 2007; Lossi et al., 2009). Por lo tanto, la generación del número 

total de las neuronas no sigue un curso de desarrollo espaciotemporal simultáneo a lo 

largo del sistema nervioso.   
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Migración y definición neuronal. Es el proceso por el que las células nerviosas 

viajan desde las zonas progenitoras mencionadas hasta su destino definitivo, bien el 

sistema nervioso central o el sistema nervioso periférico. Es un proceso crítico para la 

construcción estructural y funcional del sistema nervioso. En ambos casos, y sobre todo, 

en el caso de la migración neuronal hacia el sistema nervioso periférico, las neuronas han 

de recorrer largas distancias para llegar a su meta final Pinel, 2007; Corr, 2008). A pesar 

de este aparente hándicap, lo cierto es que la migración neuronal se produce rápidamente, 

siempre que se den las condiciones moleculares adecuadas en el medio interno y externo 

de las neuronas (Gupton y Waterman-Storer, 2006).   

Al comienzo de la migración, aproximadamente entre el tercer y el quinto mes de 

gestación, las neuronas son inmaduras (Hatten, 2002), pues carecen de axón y dendritas 

(Kalat, 2004; Pinel, 2007), sus prolongaciones definitorias. La auténtica diferenciación 

de las neuronas entre sí ocurre gracias a la definición física de aquéllas que, a su vez, 

viene determinada por el destino final que las neuronas han de alcanzar dentro del sistema 

nervioso (Kiernan y Rajakumar, 2013). En el caso de algunas neuronas, tales 

prolongaciones emergen en forma de brotes axónicos y dendríticos, a medida que las 

neuronas alcanzan su posición final dentro del sistema nervioso. Cuando es así, los axones 

brotan durante la migración celular, mientras que las dendritas se desarrollan cuando la 

célula nerviosa se aproxima a su destino definitivo. En el caso de otras neuronas, en 

cambio, tanto los axones como las dendritas brotan, una vez que las células nerviosas ya 

lo han alcanzado (Kalat, 2004).   

Existen dos tipos de migración neuronal, establecidos según la dirección en la que 

viajan las neuronas. Por un lado, la migración tangencial, en la que las neuronas migran 

en dirección paralela a las paredes del tubo neural. Ayala et al., (2007) han identificado 

dos rutas migratorias tangenciales principales: de la EGM a la neocorteza y al hipocampo 
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y de la EGL al bulbo olfatorio. En la migración radial, en contraste, las neuronas viajan 

en dirección perpendicular a las paredes del tubo neural (Marin y Rubenstein, 2003; Ayala 

et al., 2007; Pinel, 2007). Este tipo de migración es utilizada por neuronas que, habiéndose 

originado en la ZV, contribuyen a la formación de la corteza cerebral, la médula espinal, 

el cuerpo estriado y el tálamo, entre otras estructuras cerebrales (Ayala et al., 2007).  

Por otra parte, diferentes tipos de neuronas utilizan diferentes métodos de 

locomoción. Los más conocidos son el método de movimiento mediado por cambios en 

la localización del soma y el mediado por neuroglia. El primero de ellos se observa tanto 

en la migración radial como en la migración tangencial (Ayala et al., 2007; Pinel, 2007). 

En este caso, la neurona se desplaza cambiando la localización de su soma extendiendo y 

retrayendo su extensión en dirección hacia su destino final (Hatten, 2002; Ayala et al., 

2007; Pinel 2007). El segundo de ellos, en cambio, sólo se observa en la migración radial. 

En este caso, las neuronas se desplazan utilizando una red formada por neuroglia radial 

(Ayala et al., 2007; Pinel, 2007).   

La migración neuronal es un proceso que también sigue un curso espaciotemporal 

heterogéneo, ya que se sabe que distintos tipos de células, por ejemplo, las neuronas de 

las diferentes láminas de la corteza cerebral, migran a destinos diversos en momentos de 

desarrollo diferentes (Pinel, 2007). Tampoco es un proceso uniforme para todas las 

neuronas, pues algunas migran radialmente, mientras que otras migran tangencialmente. 

Además, se ha constatado que algunas pueden migrar primero tangencial y luego 

radialmente y viceversa (Parnavelas, 2000; Pinel, 2007; Métin, Vallee, Rakic y Bhide, 

2008). Sin embargo, queda por averiguar, en su caso, qué tipo exactamente de neuronas 

sufren estos cambios de dirección, si sólo las que en un principio migran radialmente, o 

sólo las que lo hacen tangencialmente o ambas. También se desconoce qué tipo de 

neuronas sufren estos cambios de dirección, si las del sistema nervioso central o las del 
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sistema nervioso periférico o ambas. Por otro lado, Kriegstein y Noctor (2004) han 

identificado que algunas neuronas de patrón migratorio radial cambian su forma celular 

y la velocidad de migración, además de la dirección durante su migración radial. Aún 

queda por dilucidar si esto también es aplicable a las neuronas de patrón migratorio 

tangencial. Finalmente, quedan nuevas rutas migratorias por identificar o incluso por 

descubrir, en su caso, además de las identificadas por Ayala et al., (2007), dada la 

complejidad de las pautas migratorias neuronales aquí descritas.    

Agrupamiento neuronal y sinaptogénesis. En mamíferos, una vez que llegan a su 

asentamiento final dentro del sistema nervioso, las células nerviosas se agrupan entre sí 

con un doble objetivo. Para formar las diferentes estructuras del sistema nervioso (Pinel, 

2007), por un lado. Por otro lado, para dar lugar a un primer entramado de conexiones 

sinápticas -proliferación sináptica-. Éste precederá al futuro complejo de sinapsis 

respondiente a las demandas ambientales. Se trata del proceso comúnmente denominado 

como sinaptogénesis. Este proceso consiste en una exuberante sobreproducción de 

sinapsis (Kalat, 2004) y en una arborización neuronal (Semple et al., 2013) -el desarrollo 

de las dendritas y espinas dendríticas de las neuronas-. En el ser humano, la 

sinaptogénesis comienza aproximadamente hacia el final del último trimestre de 

gestación prenatal (Whitaker-Azmitia, 2010) pero continúa de manera muy pronunciada 

después del nacimiento. Alcanza su cota máxima a la edad de dos años de edad (Semple 

et al., 2013).  

El objetivo de esta primera red de contactos sinápticos es establecer las bases de 

una comunicación neuronal eficaz, es decir, que lleve a las neuronas a producir sinapsis 

correctas. De hecho, la comunicación neuronal durante la sinaptogénesis es una condición 

clave para el desarrollo funcional normal -libre de alteraciones- del sistema nervioso. Para 

que se dé esta condición, cada neurona debe recibir axones de las células presinápticas 
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adecuadas, y proyectar su axón a las células nerviosas postsinápticas oportunas. Para ello, 

los axones y dendritas de las neuronas han de seguir desarrollándose. Más concretamente, 

los axones tienen que crecer lo suficiente como para alcanzar otras neuronas con las que 

poder establecer contactos sinápticos correctos, y las dendritas tienen que arborizarse con 

el mismo fin. 

Un axón en crecimiento recibe el nombre de neurita, y el crecimiento axónico 

también es denominado como proceso de elongación neurítica (Rösner, Möller, 

Wassermann, Mihatsch y Blum, 2007). Lo que favorece este crecimiento axónico es el 

extremo en crecimiento de un axón, también denominado como cono de crecimiento, 

descrito por el premio Nobel Ramón y Cajal en 1890 (Ramón y Cajal, 1890). Este cono 

de crecimiento guía el crecimiento de la neurita hacia las neuronas con las que ha de 

establecer contactos, extendiendo y retrayendo sus filopodios (Gallo, 2013). Durante su 

proceso de elongación, la neurita puede sufrir arborización dendrítica (Rösner et al., 

2007).  

Actualmente, se considera que el cono de crecimiento es dirigido por ciertas 

señales químicas emitidas por la neurona diana, que regulan el crecimiento neurítico. Se 

discuten dos hipótesis diferentes acerca del mecanismo químico específico que explicaría 

este proceso. Por un lado, la hipótesis de la quimo-afinidad postula que los axones en 

crecimiento se ven atraídos por factores de crecimiento o neurotrofinas liberadas por la 

neurona objetivo del contacto postsináptico (Cohen y Levy-Montalcini, 1956; Kalat, 

2004; Pinel, 2007). La primera y más conocida neurotrofina es el factor de crecimiento 

del nervio (FCN), descubierta por Cohen y Levy-Montalcini (1956), pero también se 

encuentran dentro de este grupo el factor neurotrófico derivado del cerebro (Hubka, 2006; 

Pedersen, Pedersen, Krabbe, Bruunsgaardm, Matthews y Febbraio, 2009; Ascano, 

Bodmer y Kuruvilla, 2012; Rao, 2013), la neurotrofina-3 (NT-3) y la neurotrofina-4/5 



Revista Internacional de Psicología                                                                                             Vol.15 No.1  

www.revistapsicologia.org                                                                                                            Enero 2016 

ISSN 1818-1023                                          Centro de Investigación sobre Desarrollo Humano y Sociedad                                                                                   

19 

 

(NT-4/5) (Mori, Takumi, Shimizu, Oishi y Hayashi, 2006; Ascano et al., 2012). Por otro 

lado, la hipótesis de la adhesión molecular postula que las neuritas se adhieren a 

determinadas proteínas contenidas en el objetivo postsináptico (Rossi, Gianola y Corvetti, 

2007; Kim, Bao, Bonanno, Zhang y Serpe, 2012; Kim y Serpe, 2013). Entre las más 

conocidas, destacan las netrinas, efrinas, semaforinas y slits (Rossi et al., 2007). Es 

posible que algunos conos de crecimiento se comporten según lo postulado por la primera 

hipótesis y otros según lo postulado por la segunda. Alternativamente, la acción 

combinada de ambos mecanismos podría explicar el comportamiento de los conos de 

crecimiento. Finalmente, sendas hipótesis podrían explicar tal comportamiento en dos 

fases diferentes de la sinaptogénesis, respectivamente. La primera se referiría a la 

dirección del cono de crecimiento, y la segunda se ocuparía de la adhesión entre las 

células pre y postsinápticas en el momento de establecer contactos entre sí (Kim y Serpe, 

2013). Interesantemente, se postula también que estas señales químicas facilitan pero 

también restringen activamente el crecimiento neurítico. Por ejemplo, las semaforinas 

Sema4D (Moreau-Fauvarque et al., 2003) y Sema5A (Goldberg, 2004) y la efrina B3 

(Benson, Romero, Lush, Lu, Henkemeyer y Parada, 2005) inhiben el crecimiento axónico 

para evitar la formación de circuitos neuronales aberrantes y, por lo tanto, el caos 

anatómico funcional del sistema nervioso (Rossi et al., 2007).     

La formación sináptica del desarrollo del sistema nervioso fue estudiada por 

primera vez en el cerebro humano por Huttenlocher (1979). Éste demostró que aquélla 

sigue un curso de desarrollo específico de la edad y de la región cerebral (Semple et al., 

2013). En concreto, comienza en el quinto mes de gestación (Rivkin, 2000; Semple et al., 

2013); pasa por un rápido crecimiento sináptico durante los primeros meses postnatales 

y continúa hasta bien entrados los dos años de edad (Huttenlocher, 1979; Herschkowitz, 

Kagan y Zilles, 1997). Por su parte, Ashwell y Mai (2012) han identificado que la 
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sinaptogénesis acontece en primer lugar en regiones subcorticales del cerebro -en el 

tálamo- y, posteriormente, en regiones superiores del cerebro -corteza prefrontal-. 

Finalmente, Huttenlocher, De Courten, Garey y Van der Loos (1982) y Lenroot y Giedd 

(2006) han observado que los picos de máxima densidad sináptica se producen en la 

corteza visual primaria y en la corteza cerebral prefrontal entre los ocho y doce meses y 

entre los dos y cuatro años de edad, respectivamente.  

Por lo tanto, la sinaptogénesis también sigue un patrón espaciotemporal no 

simultáneo a lo largo del sistema nervioso humano. En otras especies, como los primates, 

sin embargo, las primeras conexiones sinápticas se establecen en todas las regiones 

cerebrales simultáneamente (Capilla González y Pérez Hernández, 2008).   

Mielinización. Una vez formados los axones, y sólo en el caso de algunos de ellos, 

éstos serán recubiertos por una gruesa capa aislante, la vaina de mielina. Existen, pues, 

fibras mielínicas y fibras amielínicas. Ésta es la causante del aspecto blanco de la materia 

blanca del sistema nervioso (Ahrens, Blumenthal, Jacobs y Giedd, 2000). Esta sustancia 

es segregada por las células gliales, principalmente por células de Schwann en el sistema 

nervioso periférico y por astrocitos, microglía y, en mayor abundancia, por 

oligodendrocitos en el sistema nervioso central (Su y He, 2010).  

Por un lado, las células de Schwann proceden de sus propias células precursoras, 

originadas, a su vez, a partir de células migratorias de la cresta neural. Los precursores de 

células de Schwann son aún células inmaduras, es decir, sin definición funcional. Sin 

embargo, a medida que avanza su desarrollo, se van diferenciando como células de 

Schwann productoras o no productoras de mielina, respectivamente. Esta diferenciación 

funcional depende, en última instancia, de señales provenientes de los axones con los que 

establece contactos cuando las células de Schwann inmaduras se adentran en el sistema 

nervioso periférico. Las células de Schwann productoras de mielina se diferencian antes 



Revista Internacional de Psicología                                                                                             Vol.15 No.1  

www.revistapsicologia.org                                                                                                            Enero 2016 

ISSN 1818-1023                                          Centro de Investigación sobre Desarrollo Humano y Sociedad                                                                                   

21 

 

que las no productoras de mielina (Ndubaku y de Bellard, 2008). Durante el transcurso 

de su desarrollo, los axones son separados entre sí por las células de Schwann productoras 

de mielina, estableciendo una relación de ratio 1-1 con los axones a los que pasará a 

mielinizar progresivamente (Yao, Windenbank, Poduslo y Yoshino, 1990; Ndubaku y de 

Bellard, 2008).  

Por otro lado, los oligodendrocitos derivan de sus precursores que, a su vez, se 

originan de las células madre neuronales de distintas zonas germinales del tubo neural 

(Kinameri y Matsuoka, 2003; Rossi et al., 2007; Yang, Lewis y Miller, 2011). Los 

precursores de oligodendrocitos sufrirán procesos migratorios a través del sistema 

nervioso central antes de diferenciarse en oligodendrocitos propiamente dichos. Estos 

precursores celulares pueden generar, además, astrocitos y neuronas (Kondo y Raff, 2004; 

Ndubaku y de Bellard, 2008; Yang et al., 2011). Una vez que esta diferenciación tiene 

lugar, y que, por lo tanto, han madurado, los oligodendrocitos comienzan a segregar 

proteína básica de mielina y otros elementos de la mielina, y, por lo tanto, a formar las 

vainas compactas de mielina (Yang et al., 2011). Éstas se ven interrumpidas por unas 

hendiduras –los nodos de Ranvier-, que provocan que el impulso nervioso brinque entre 

ellos (conducción saltatoria), acelerando, así, su conducción a lo largo de la célula 

nerviosa (Caldwell, 2009). El número final de oligodendrocitos parece depender de que 

el linaje celular llegue a un equilibrio determinado (Yang et al., 2011), dado que más 

precursores de oligodendrocitos no dan lugar a más oligodendrocitos, y que la 

sobreproducción de oligodendrocitos provoca su muerte celular (Richardson et al., 1988; 

Calver et al., 1998).   

La mielinización del cerebro comienza en la decimosegunda y decimotercera 

semanas posteriores a la concepción en regiones caudales, y continúa progresivamente 

durante la infancia, la adolescencia y hasta bien entrada la adultez, en regiones rostrales 
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(Girard et al., 2007; Rapopport y Gogtay, 2008). Sigue, por lo tanto, un curso de 

desarrollo in crescendo y temporal de menor a mayor edad (Rohlfs Domínguez, 2010) y 

un curso espacial trasero-delantero (Gogtay, 2008). Además, esta mielinización in 

crescendo tiene lugar generalmente desde regiones cerebrales inferiores, tales como las 

áreas cerebrales responsables de las funciones sensoriales y motoras, a regiones 

superiores del cerebro, como las áreas de asociación, por ejemplo, la corteza frontal. 

Sigue, por lo tanto, un curso espacial inferior-superior (Gogtay et al., 2004; Casey, Galvan 

y Hare, 2005; Lebel, Walker, Leemans y Beaulieu, 2008).   

Finalmente, la mielinización depende de la actividad funcional de los axones 

(Zatorre, Fields y Johansen-Berg, 2012). Ésta es inducida por las experiencias derivadas 

del ambiente (Ishibashi, Dakin, Stevens, Lee, Kozlov, Stewart et al., 2006), incluidas las 

experiencias sociales (Liu et al., 2012; Makinodan, Rosen, Ito y Corfas, 2012), de la 

comunicación entre neuronas y células gliales (Fields, 2004; Almeida y Lyons, 2014) y 

del contacto entre neuronas y ciertas moléculas de adhesión (Comana, Barbina, Charlesa, 

Zalca y Lubetzki, 2005). Estos dos últimos factores también dependen de la actividad 

axonal. A más actividad funcional axonal, más mielinización y, por lo tanto, más 

fortalecimiento de las conexiones sinápticas implicadas (Nordeen y Nordeen, 2004). Este 

tipo de fortalecimiento de las conexiones sinápticas se refleja especialmente en los 

conocidos "períodos sensibles" de aprendizaje de muchas conductas (Nordeen y Nordeen, 

2004) y de desarrollo sensorial y probablemente cognitivo. Se trata de períodos en los que 

resulta especialmente sencillo aprender la ejecución de una conducta, por ejemplo, 

aprender a hablar un primer -a los dos años- y segundo idiomas -a los dos cuatro- (Giraud 

y Lee, 2007). Además, de darse la estimulación adecuada, las funciones sensoriales, por 

ejemplo, la visión (Lewis y Maurer, 2005), se desarrollan mejor.  
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Reorganización neuronal: mantenimiento de las conexiones establecidas versus 

apoptosis y poda sináptica. De la sobreproducción de neuronas y conexiones neuronales 

generada, algunas sobrevivirán mientras que otras, las sobrantes (Maor-Nof y Yaron, 

2013), serán eliminadas mediante procesos selectivos de autodestrucción letal. En el caso 

de las neuronas, este proceso se llama apoptosis o muerte celular programada. En el caso 

de las sinapsis, nos referimos a la poda sináptica, eliminación sináptica o poda axónica.  

La apoptosis neuronal, por un lado, consiste en la desintegración de las neuronas 

en partículas (Lüer y Technau, 2009), y suele ocurrir al final de la gestación (Aswell y 

Mai, 2012). No obstante, también se ha constatado durante el primer trimestre de 

gestación (Rakic y Zecevic, 2000) y entre el tercer trimestre de desarrollo prenatal y el 

sexto mes postnatal (Kostovic et al., 1989; Kostovic y Rakic, 1990; Marin-Padilla, 1997). 

Sin embargo, también puede afectar a células gliales (Winseck et al., 2002; Lossi et al., 

2005). Hasta la mitad de las células originalmente producidas se pueden perder mediante 

este proceso de desarrollo (Becker y Bonni, 2004; Yeo y Gautier, 2004).  

El proceso de apoptosis es comúnmente denominado como muerte celular 

programada, debido a que cursa a través de toda una compleja serie de eventos 

predeciblemente regulados durante el desarrollo del sistema nervioso. También recibe el 

nombre de muerte neuronal natural. Además, como son las propias células las 

responsables de su propia desaparición, la muerte celular programada suele considerarse 

como una especie de suicidio celular. No obstante, la muerte celular programada puede 

ser causada por trastornos neurodegenerativos como el Alzheimer (Jiménez del Río y 

Vélez Pardo, 2001), o por agentes físicos y químicos varios, e incluso ha sido asociada al 

envejecimiento (Lossi et al., 2005).  

Se postula que se trata de un proceso necesario, evolucionado para corregir 

circunstancias que podrían causar daños mortales en el embrión (Buss, Sun y Oppenheim, 
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2006). Su función principal sería la de ajustar el número de neuronas del sistema nervioso 

central y del sistema nervioso periférico para proporcionar suficiente inervación tanto a 

los centros neurales, diana de sus eferencias, como a los centros neurales desde los que 

recibe aferencias (Becker y Bonni, 2004; Buss et al., 2006). La muerte celular programada 

corrige también errores en la formación de las conexiones sinápticas. Por último, regula 

el número de precursores celulares en zonas germinales del sistema nervioso central y del 

sistema nervioso periférico, que, a su vez, regulan el tamaño y la morfología de las 

estructuras neuronales resultantes (Buss et al., 2006). De hecho, se ha constatado muerte 

celular programada en la ZV, coincidiendo con el comienzo de la neurogénesis, y, por lo 

tanto, en una fase muy temprana del desarrollo neural, en varias especies de vertebrados, 

incluidos mamíferos como el ratón (Yeo y Gautier, 2004). En el ser humano también se 

ha encontrado muerte celular programada en las zonas proliferativas del telencéfalo (De 

Graaf-Peters y Hadders-Algra, 2006). Sin embargo, esta temprana muerte celular 

programada (Yeo y Gautier, 2004) no está relacionada con la formación sináptica (Lossi 

y Merighi, 2003).  

Por otro lado, la poda axónica tiene lugar, durante el desarrollo postnatal del 

sistema nervioso (Rivkin, 2002; Aswell y Mai, 2012), a consecuencia de la muerte celular 

programada (Saxena y Caroni, 2007). Si bien, otros factores, tales como lesiones y/o 

trastornos del sistema nervioso, pueden causar igualmente poda axónica (Saxena y 

Caroni, 2007). Los mecanismos de poda axónica más conocidos son la retracción de los 

axones, por un lado, y la degeneración de los mismos, por otro lado (Kantor y Kolodkin, 

2003; Saxena y Caroni, 2007). En la retracción axónica, el axón es retraído gradualmente 

hacia atrás, de tal manera que su material es trasladado a secciones proximales del axón 

(Saxena y Caroni, 2007). En la degeneración, en cambio, los axones sufren pérdidas de 

fragmentos ricos en material sináptico, denominados axosomas (Koirala y Chien-Ping, 
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2004), término introducido por el laboratorio de Jeff Lichtman (Bishop, Misgeld, Walsh, 

Gan y Lichtman, 2004), que luego son fagocitados por glia adyacente (Saxena y Caroni, 

2007), por ejemplo, células de Schwann (Bishop et al., 2004; Koirala y Chien-Ping, 2004; 

Maor-Nof, M. y Yaron, 2013). En cualquier caso, en el ser humano se ha constatado poda 

sináptica durante la infancia (entre los seis meses postnatales y los siete años de edad) 

(Huttenlocher, 1979). Asimismo, se ha encontrado pérdida de materia gris (de somas y 

dendritas) en la adolescencia, atribuyéndose a poda axónica (Gogate, Giedd, Janson y 

Rapoport, 2001; Sowell, Thompson, Tessner y Toga, 2001; Blakemore y Choudhury, 2006; 

Blakemore, 2012). Dado que también se han encontrado pérdidas masivas de materia gris 

entre los veinte y treinta años de edad en la corteza frontal (Sowell et al., 2001; Sowell, 

Peterson, Thompson, Welcome, Henkenius y Toga, 2003), sería plausible que procesos 

de poda sináptica tuvieran lugar también durante la adultez temprana, lo que habría que 

dilucidar en un futuro. Otros autores, sin embargo, atribuyen dichas pérdidas de materia 

gris a cambios en la distribución entre la materia gris y blanca (Lu et al., 2007; Sowell et 

al., 2003; Casey et al., 2005; Rapoport y Gogtay, 2008). Es posible que la combinación 

de sendos procesos de desarrollo determinen tales pérdidas (Rohlfs Domínguez, 2011). 

En cualquier caso, resulta lógico asumir que la poda sináptica también es un proceso cuyo 

curso de desarrollo depende de la edad del individuo y de la región cerebral.  

La eliminación o supervivencia de neuronas y conexiones nerviosas relacionadas 

con la formación sináptica, que es diferente de la muerte celular programada temprana 

(Yeo y Gautier, 2004), depende de la competición neuronal por los llamados factores 

neurotrópicos, tales como el FCN (Buss et al., 2006). Estos estimulan la supervivencia y 

la actividad de la neurona, así como la sinaptogénesis. De hecho, la premio Nobel de 1986 

en fisiología y medicina Levy-Montalcini, junto con Cohen, descubrió que aquellos 

axones que no recibían suficiente FCN degeneraban, y sus somas morían. Un axón recibe 
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suficiente FCN para sobrevivir estableciendo contactos exitosos con otras neuronas, de 

las cuales reciben esta sustancia. Durante el desarrollo, si un axón no establece el contacto 

correcto con una neurona a una determinada edad, la neurona muere (apoptosis). Cuando 

las neuronas y/o axones son eliminados, los espacios vacantes son ocupados por nuevos 

axones y ramificaciones dendríticas desarrolladas por las neuronas supervivientes, dando 

lugar a una reorganización masiva de las conexiones nerviosas (Pinel, 2007; Saxena y 

Caroni, 2007). Los mecanismos específicos de esta reocupación neuronal y 

reorganización sináptica están aún por esclarecerse.  

En los vertebrados, la experiencia (medio ambiente externo), a demás de la 

genética (medio ambiente interno), resulta ser crucial en el mantenimiento y/o 

eliminación de conexiones nerviosas. Se trata de la modulación ambiental del desarrollo 

ontogenético (embrionario-fetal) del sistema nervioso. Las neuronas y sinapsis que no 

son activadas por la experiencia derivada del medio ambiente externo normalmente no 

sobreviven. Esta sencilla regla cobra especial importancia en lo concerniente a los 

períodos sensibles de aprendizaje conductual y de desarrollo sensorial y probablemente 

cognitivo. En estos períodos, el aprendizaje de determinadas conductas, así como el 

desarrollo de funciones sensoriales y probablemente cognitivas no será viable si las 

conexiones sinápticas que las posibilitan se han eliminado mediante poda axónica. Esto, 

a su vez, da lugar a una alteración del desarrollo del individuo. Por lo tanto, la poda 

axónica es un proceso de desarrollo que tiene un papel protagonista fundamental en la 

regulación de la plasticidad neural. La plasticidad neural se puede definir como la 

capacidad del cerebro de reorganizar su morfología y función en base a las experiencias 

con el medio externo (Rohlfs Domínguez, 2010). 

Durante la vida de un individuo, los procesos de formación y eliminación sináptica 

se intercalan intermitentemente, dando lugar a una continua reorganización de los 
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circuitos neuronales que supone la base de la plasticidad neuronal (De Graaf-Peters y 

Hadders-Algra, 2006). 

Como se puede apreciar, la secuencia de eventos ontogenéticos del desarrollo 

prenatal del sistema nervioso humano se desarrolla a través de dos fases consecutivas. La 

primera tiene lugar a partir de la fecundación y la segunda afecta al período embrionario-

fetal. La Tabla 1 recoge una síntesis de los eventos que nos ocupan.    

 

Tabla 1  

Secuencia de eventos ontogenéticos implicados en el desarrollo del sistema nervioso 

humano 

Evento ontogenético Fase de desarrollo 

Gastrulación (emergencia del ectodermo) 1ª, 3 días post fecundación 

Emergencia de la placa nural o 

neuroectodermo 

2ª, 2 semanas días 

Neurulación primaria 2ª, 4 semanas  

Neurogénesis 2ª, 3 Meses 

Migración neuronal 2ª 3-5 Meses 

Sinaptogénesis 2ª, Final del Tercer trimestre de 

gestación-Dos años  

Mielinización 2ª, 12ª semana post concepción-vida 

adulta 

Apoptosis 2ª, Final de la gestación prenatal-6º mes 

postnatal  

Poda axónica Desarrollo postnatal 

 

 

Este trabajo se ha elaborado fundamentalmente con el objetivo de dilucidar el 

estado actual del conocimiento sobre la secuencia de eventos ontogenéticos implicados 

en el desarrollo prenatal del sistema nervioso humano y sobre los propios eventos. 

Además, pretende contribuir, de manera didáctica, a la introducción del público lector en 

los elementos más fundamentales de tal secuencia de eventos. De acuerdo con estos 

objetivos, se ha elaborado desde una perspectiva general. Para ello, se ha basado 
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principalmente en trabajos de investigación humana y animal llevados a cabo por la 

comunidad científica nacional e internacional durante los últimos diez años. Este trabajo 

también es fruto del esfuerzo investigador que la autora ha invertido, como profesora de 

la asignatura Psicobiología del Desarrollo en los respectivos departamentos de 

Psicobiología de la Universidad de Granada, la Universidad de Huelva (España) y la 

Universidad de Potsdam (Alemania), en la temática aquí discutida, durante los penúltimos 

cursos académicos. Por lo tanto, se trata de una monografía actualizada hasta 2013.  

El presente trabajo supone una contribución científica que, dado su carácter 

actualizador en relación al conocimiento aquí vertido, puede inspirar en el futuro a otros 

autores, por ejemplo, de cara a generar nuevas hipótesis de estudio en relación a desarrollo 

del sistema nervioso humano. Por otro lado, este trabajo pretende ser una herramienta útil 

en el estudio e impartición de asignaturas como Psicobiología del Desarrollo y otras 

materias relacionadas con ésta. 

Discusión 

A continuación, se discuten las evidencias identificadas respecto del estado actual 

del conocimiento sobre la secuencia de los distintos eventos ontogenéticos implicados en 

el desarrollo prenatal del sistema nervioso humano y sobre aquéllos.  

En relación a la secuencia de tales eventos, conviene destacar aquí que, de la 

literatura aquí revisada, se deduce que existe acuerdo en la comunidad científica en que 

existen dos fases claramente diferenciadas. La primera atañe al óvulo fertilizado o zigoto 

y la segunda al embrión y feto.  

Sobre la primera, también existe acuerdo en afirmar que el evento ontogenético 

implicado en el desarrollo prenatal del sistema nervioso humano es la sucesiva 

transformación del zigoto, mediante división celular mitótica, en tres estados diferentes -

mórula, blástula y gástrula-. Es en este último estado cuando aparece la capa celular que 
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dará lugar al sistema nervioso humano, el ectodermo (Kiernan y Rajakumar, 2013), es 

decir, la capa celular conformada por progenitores de las células que en un futuro 

configurarán el sistema nervioso humano. Por lo tanto, la emergencia de la gástrula  

supone un punto de inflexión a la hora de determinar el origen del sistema nervioso 

humano. En este sentido, se aprecia, tal y como afirma (Mancheño Maciá y Giménez 

Ribotta, 2005), la progresiva especialización funcional de las células que conforman el 

zigoto. De hecho, éstas pasan de ser células madre totipotenciales -en la fase de mórula- 

a células multipotenciales -en la fase blástula- y, finalmente, a progenitores -en la fase de 

gástrula-.  

En cuanto a la segunda fase, cuando ya el zigoto se ha transformado en embrión, 

la literatura revisada describe casi unánimemente la ocurrencia de los siguientes hitos 

biológicos: neurulación primaria; neurogénesis; migración neuronal; agrupamiento 

neuronal; sinaptogénesis; mielinización y apoptosis. La poda sináptica es un proceso 

mayormente postnatal.  

Acerca de la neurulación primaria, se recuerda aquí que se compone, a su vez, de 

los siguientes procesos ontogenéticos: fusión de los pliegues neurales de la placa neural; 

desarrollo de la cresta neural; formación del tubo neural y migración celular de la cresta 

neural. Es precisamente este último acontecimiento el que suscita cierto debate científico; 

mientras que algunos autores -Huang y Saint-Jeannet (2004); Sadler, (2009); Betters, Liu, 

et al., 2010- sitúan esta migración celular, en el caso del ser humano y del ratón, una vez 

conformada la cresta neural, otros autores -Milet y Monsoro-Burg (2012)-  la localizan 

ya en la fase de gastrulación, en el caso de la rana. Por otra parte, la completa formación 

del tubo neural supone otro punto de inflexión en el desarrollo prenatal del sistema 

nervioso humano, dado que, siguiendo a Lim y Glden (2007), determina las dos grandes 

divisiones del sistema nervioso central -cerebro y médula espinal-.     
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Con respecto a la proliferación neuronal o neurogénesis, la mayoría de autores la 

sitúan en la ZV y ZSV, y afirman que las neuronas aquí producidas derivan directamente 

de precursores neuronales cuyos nichos se encuentran precisamente en sendas zonas 

(Cavada, 1988; Parnavelas, 2000; Kriegstein y Noctor, 2004; De Graaf-Peters y Hadders-

Algra, 2006; Ayala et al., 2007; Snell, 2007). Sin embargo, un brillante trabajo de revisión 

(Kriegstein y Álvarez-Buylla, 2009) ha identificado que las células madre gliales radiales 

situadas en estas zonas también pueden generar precursores neuronales e incluso 

neuronas. Esto supone evidencia en contra de una total diferenciación estructural y 

funcional entre células neuronales y gliales. Otro dato interesante a destacar aquí es que 

la producción de células en la cresta neural está comúnmente asociada a la formación del 

futuro sistema nervioso periférico (Dickinson et al., 2004; Kiernan y Rajakumar, 2013; 

Hao et al., 2013). Sin embargo, otros autores -Le Douarin y Dupin, 2003; Milet y 

Monsoro-Burg, 2012- han identificado la capacidad de las células de la cresta neural de 

generar células de otros tipos, tales como el óseo o tendinoso. Por lo tanto, y dadas estas 

evidencias, se puede afirmar que las células de la cresta neural están dotadas de 

multipotencialidad. Finalmente, cabe mencionar que la literatura aquí revisada refleja 

también acuerdo en considerar que el curso espaciotemporal de la generación de neuronas 

a lo largo del sistema nervioso no es simultáneo. Una de las evidencias más claras al 

respecto es la ya tan comprobada neurogénesis adulta por autores como Arias-Carrión et 

al., (2007); Cayre et al., (2009); Lossi et al., (2009) y Belvindrah et al., (2011), entre otros.     

En cuanto a la migración neuronal, se aceptan comúnmente tanto la migración 

tangencial (Ayala et al. 2007) como la radial (por ejemplo, Marin y Rubenstein, 2003) 

como los dos tipos de migración neuronal conocidos, así como dos métodos de 

locomoción utilizados por las neuronas durante la mencionada migración -el cambio de 

localización del soma y el mediado por neuroglia (Hatten 2002; Ayala et al., 2007; Pinel, 
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2007). Sin embargo, los indicios que apuntan a que algunas neuronas cambian de 

dirección durante su viaje migratorio (Parnavelas, 2000; Pinel, 2007; Métin et al., 2008) 

lleva a cuestionar la clasificación de las neuronas como neuronas migratorias tangenciales 

y como neuronas migratorias radiales como vigente.   

Sobre la sinaptogénesis, se puede afirmar que toda una serie de evidencias 

proporcionadas por la literatura aquí revisada (Huttenlocher et al., 1982; Lenroot y Giedd, 

2006; Capilla González y Pérez Hernández, 2008; Ashwell y Mai, 2012) indican que la 

sinaptogénesis tiene lugar de menor a mayor edad y de zonas inferiores del cerebro a 

zonas superiores del mismo. Esto revalid lo ya aportado por Huttenlocher en la década de 

los setenta, esto es, que la sinaptogénesis prenatal humana sigue un patrón de desarrollo 

dependiente de la edad y de la región del cerebro, y que éste un patrón específico del ser 

humano. Otro conjunto de evidencias señala al crecimiento neurítico como factor sine 

qua non para que la sinaptogénesis pueda tener lugar. El mecanismo que lo facilita, en 

cambio, se debate actualmente. Mientras que algunos autores apuestan por la hipótesis de 

la quimo-afinidad (Cohen y Levy-Montalcini, 1956; Kalat, 2004; Pinel, 2007), otros 

defienden la de la adhesión molecular (Rossi et al., 2007; Kim et al., 2012; Kim y Serpe, 

2013). Aquí se propone la hipótesis de que ambos mecanismos pueden explicar el 

crecimiento neurítico, pero hay que someterla a verificación en el futuro.   

Por otro lado, la evidencia recogida en este trabajo acerca de la mielinización 

destaca su dependencia de la actividad de los axones inducida por la experiencia externa 

(Nordeen y Nordeen, 2004; Zatorre et al., 2012). Asimismo, la procedencia de la vaina 

de mielina, principalmente de células de Schwann en el sistema nervioso periférico y de 

astrocitos, microglía y, en mayor abundancia, oligodendrocitos en el sistema nervioso 

central (Su y He, 2010) también queda aquí destacada.  
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Finalmente, y con respecto a la apoptosis, el último evento ontogenético del 

desarrollo prenatal del sistema nervioso humano, cabe decir que aunque está asociada al 

final de la gestación prenatal, tal y como han identificado Aswell y Mai (2012), también 

se ha constatado durante el primer trimestre de gestación (Rakic y Zecevic, 2000) y entre 

el tercer trimestre de desarrollo prenatal y el sexto mes postnatal (Kostovic et al., 1989; 

Kostovic y Rakic, 1990; Marin-Padilla, 1997).       

Conclusiones 

El presente trabajo de investigación se ha elaborado fundamentalmente con el 

objetivo de presentar una actualización acerca del conocimiento producido hasta el año 

2013 sobre la secuencia de eventos ontogenéticos involucrados en el desarrollo prenatal 

del sistema nervioso humano y sobre estos eventos.   

A la luz de la presente monografía, se puede concluir, en  primer lugar, que, en 

relación a la secuencia de los eventos que nos ocupan, existen dos fases bien 

diferenciadas, una que comienza nada más se ha producido la fecundación y una segunda 

fase que abarca el desarrollo embrionario-fetal del futuro individuo. En ambas fases se 

constata la ocurrencia de toda una serie de eventos ontogenéticos -sintetizados en la tabla 

1-, necesarios para el buen desarrollo del sistema nervioso humano.  

La segunda conclusión se refiere al hecho de que, mientras que algunos de los 

eventos ontogenéticos del desarrollo embrionario-fetal del sistema nervioso humano aquí 

descritos transcurren sucesivamente, otros se solapan entre sí. Por ejemplo, la 

sinaptogénesis ocurre concurrentemente con el crecimiento axonal y dendrítico y con la 

mielinización. Tal solapamiento de eventos sugiere que el desarrollo embrionario-fetal 

del sistema nervioso humano acontece a lo largo de un continuo espaciotemporal que 

sigue un curso constante y sin interrupción. Sin embargo, no todos los eventos de 

desarrollo prenatal descritos ocurren por igual y simultáneamente en todo el sistema 
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nervioso. De hecho, el desarrollo prenatal del sistema nervioso sigue un orden espacio-

temporal relativamente establecido y sometido a la edad del individuo y a la región 

cerebral específica. Mientras que las regiones inferiores (sensoriales y motoras) se 

desarrollan tempranamente y, por lo tanto, en individuos jóvenes, las regiones superiores 

(de asociación) se desarrollan con posterioridad y en individuos más avanzados en edad. 

Además, este patrón de desarrollo ontogenético del sistema nervioso coincide con su 

patrón desarrollo evolutivo, en tanto que las regiones inferiores son, filogenéticamente 

hablando, más antiguas que las superiores, que emergieron más tardíamente. El curso de 

desarrollo embrionario-fetal del sistema nervioso humano muestra, por lo tanto, un patrón 

indiscutiblemente estereotipado. Por otra parte, el desarrollo prenatal del sistema nervioso 

humano se ve influido por las influencias del ambiente externo (experiencia), además de 

por la de los propios genes, hecho que tampoco suscita debate científico.  

En tercer lugar, cabe afirmar que el desarrollo prenatal del sistema nervioso 

implica la emergencia y el desarrollo paralelo, tanto de estructuras anatómicas como de 

funciones. La alteración de este proceso puede provocar alteraciones anatómicas y 

funcionales perjudiciales para el individuo. De aquí que el desarrollo prenatal del sistema 

nervioso humano cuente con mecanismos como la apoptosis destinada a la corrección de 

de errores en la formación de conexiones sinápticas durante la sinaptogénesis.      

La presente monografía tiene varias implicaciones. Por un lado, presenta el estado 

actual de los eventos ontogenéticos del desarrollo prenatal del sistema nervioso humano 

y su secuencia hasta 2013, lo que lleva a una mejor comprensión de los mismos. Por otro 

lado, identifica una serie de interrogantes que convendría dilucidar en el futuro, y que se 

muestran más abajo.    

En cuanto a las limitaciones de esta monografía, cabe decir que ésta incluye el 

tratamiento de la secuencia total de eventos ontogenéticos. Por esta razón, está elaborada 
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desde una perspectiva general. Futuros trabajos de investigación, por ejemplo, de revisión 

de tipo Cochrane (The Cochrane Collaboration, 2013) podrían concentrarse de manera 

más específica y profunda en cualquiera de los eventos ontogenétgicos aquí descritos.    

Finalmente, se exponen a continuación varias recomendaciones para futuras 

investigaciones. Estas recomendaciones están destinadas a resolver en el futuro las 

siguientes cuestiones por medio de esfuerzo investigador para comprender mejor la 

ocurrencia y curso de los eventos ontogenéticos que aquí nos ocupan.  

En relación a la migración neuronal, surgen las siguientes preguntas de 

investigación: ¿Podría existir migración celular en humanos ya en la fase de gastrulación? 

¿Cumple la migración celular en cada una de estas localizaciones funciones 

diferenciadas? Dar respuesta a estas preguntas es especialmente interesante, puesto que 

la migración neural supone un punto de inflexión en el desarrollo prenatal del sistema 

nervioso humano, ya que está implicada en el desarrollo del futuro sistema nervioso 

periférico. Además, se desconoce la influencia que tiene la variable velocidad de la 

migración neuronal en el desarrollo del sistema nervioso ni las consecuencias que 

pudieran derivarse de alteraciones de esta variable. Se desconoce también si las neuronas 

de patrón migratorio tangencial pueden cambiar su forma celular y su velocidad y 

dirección de migración, como sí lo hacen las neuronas de patrón migratorio radial. 

Tampoco se sabe si existen más rutas migratorias de las ya identificadas ni cuáles son.  

La comprensión de la sinaptogénesis tampoco está exenta de nuevas preguntas de 

investigación. En concreto, se recomienda responder a las preguntas ¿qué tipo de conos 

de crecimiento se comportan según la hipótesis de la quimo-afinidad y qué tipo de conos 

hacen lo propio según la hipótesis de la adhesión molecular? ¿podrían explicar sendas 

hipótesis el comportamiento de los conos de crecimiento en fases diferentes de la 

sinaptogénesis? 
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Finalmente, en base a  la literatura aquí revisada acerca de la poda sináptica, surge 

la pregunta de si existe poda sináptica durante la adultez temprana.   
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