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1. Introduction

In general terms, Exploratory Factor Analysis
(EFA) is the umbrella term used to refer to a set of
multivariate interdependence statistical methods
whose main purpose is to identify an underlying
factor structure within a wide data set. The term EFA
may refer either to a set of statistical techniques or to
a unique interdependence method (Khan, 2006),
which is used to reduce a great number of operational
indicators to a lower number of conceptual variables
(Blalock, 1966). Although this technique is widely

used in the field of social sciences, it is particularly
relevant in the psychometric field. Indeed, the EFA is
the conclusive step to verify the internal structure of
any scale and to select and give a theoretical
significance to an initial set of items of a test (Martinez
Arias, 1995). This multivariate method allows for
clustering variables (e.g., items) that are highly
correlated with each other, and whose correlations
with another groups' variables (factors) are lower.
Even though the variables used are generally
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continuous, it is also possible to apply this method to
dichotomous variables (Khan, 2006).

According to Kline (2000), through the EFA, the
variability of scores of a set of variables can be
explained by a lower number of dimensions or
factors. Thus, for example, a great number of items of
tests can be reduced to a small number of factors or
dimensions (such as verbal ability and extraversion)
that confers a theoretical significance to the measure.
Each of these factors clusters intercorrelated items
which, at the same time, are relatively independent of
the remaining set (factors) of items.

Like other statistical techniques, the EFA begins
with Galton's works (1889). He suggested the concept
of latent trait to explain why a set of variables were
related. According to this author, the fact that two
variables are related with each other implies that both
variables have something in common and something
that differentiates them. In this way, the total variance
of a variable results from the factors shared with other
variables (communality) and the specific factors of the
variable (specificity). The EFA logic is based on this
idea. It is worth saying that, if a set of variables are
correlated with each other, these reciprocal relations
are caused by a factor or latent trait in common.
Besides, the variance of the variables or measured
indicators is partly explained by such factor (Blalock,
1966). With this in mind, Galton (1889) said that it was
necessary to develop a technique that would allow
discover these factors or underlying latent variables.

The development of the basic principles of EFA
could also be attributed to Pearson (1901), who
developed the correlation coefficient and outlined
the principles on which the principal axis factor
analysis is based. However, there is general consensus
about considering Spearman (1904) as the creator of
the EFA. This British psychologist applied the EFA in
order to study the correlations among different ability
tests, which were supposed to reflect the underlying
intelligence factor. Spearman's research was
formalized in the bifactor theory of intelligence.
According to this theory, there was a general factor of
intelligence (communality of tests) that was partially
connected with other specific mental abilities (Figure
1).

Since the 1930s, the EFA is resumed by Thurstone
(1947), who consolidated the methodological basis
and proposed a reformulation of it.

According to Thurstone's theory, the activities

carried out by people depend on certain number of
attributes or factors that intervene in different
combinations and can be objectively determined by
applying the EFA. Thurstone's empirical works led to
the discovery of a set of factors involved in the
abilities and personality domains.

Figure 1. Spearman's Bifactor Theory of Intelligence
(adapted from Cohen & Swerdlik, 2006).

Over the years, many authors from different
countries resumed the task of developing the
technique of the EFA. It is worth highlighting the
works of Stephenson, Vermon and Eysenck from
England; Kelley, Hottelling, Cattell and Horn from the
United States; Meili from Germany, and Rimoldi from
Argentina (Yela, 1996). However, beyond the
developments and reformulations, the logic of EFA is
still the same. Indeed, it is considered that there exists
a series of underlying unobserved variables that can
be measured by using multiple observable indicators.
Thus, perhaps the primary value of this method is that
it can replace a great number of indicators that have
limited theoretical significance with a smaller number
of conceptually meaningful variables (Blalock, 1966).

2. Assumptions of Factor Analysis

Before doing an EFA, the fulfillment of a series of
exacting statistical assumptions should be verified. If
not, the results could be misleading. Specifically,
Martinez Arias (1999) points out that before doing an
EFA, three main assumptions should be analyzed:
normality, linearity and multicollinearity in scores. In
addition, the results of the EFA and the statistical
analysis designed to evaluate the assumptions that
were previously mentioned can be distorted by cases
of marginal scores (outliers uni and multivariated).
Therefore, it is recommended that an initial
exploratory analysis be carried out first in order to
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detect outlier cases or cases with extreme values.

Outlier cases are those in which extreme values
occur on one variable or on a set of variables. This is
what makes them differ from the behavior of the rest
of the sample (Uriel & Aldas, 2005). Even though not
all outlier cases are necessarily problematic, they may
turn into observations that distort the results. In order
to examine the impact of outlier or marginal cases on
the EFA, this method must be considered as part of a
correlation matrix between variables, and such
correlations must be estimated based on the mean or
the average value of such variables. According to
Pagano (1998), the mean is a statistical parameter
sensitive to extreme values, i.e. an outlying value of
the central tendency causes large displacements on
the mean. Therefore, if the mean is distorted, the
correlation between variables, and thus the EFA will
also be affected.

There are different methods to detect outlier or
extreme univariate cases. The most used one consists
of calculating the typical scores of each variable and
considering those cases whose z-scores are outside of
the range %3 as potential outlier cases (Tabachnick &
Fidell, 2001). An alternative approach could be to look
at the box plots, which display outliers, as isolated
points at the end of these plots. Considering that
even working with univariate data could generate
atypical multivariate combinations, it is
recommended to use the Mahalanobis distance (D%
procedure in order to find multivariate outlier cases.
By using this method, it is possible to detect the
multivariate outlier cases, which are those cases that
exceed the significance threshold (p < .001) (Uriel &
Aldas, 2005).

Generally, the assumption of normality of the
variables has to be verified once it has been detected
the existence of outlier cases. While the statistical
procedure commonly applied to evaluate the
normality of a distribution is the use of goodness-of-
fit contrast tests, like statistical Shapiro-Wilk and
Kolmorogov-Smirnof, such statistical are too sensitive
to small normality deviations when they are used with
large samples, as Pérez (2004) proposes. For this
reason, it is not advisable to use the contrast statistical
as the unique method of normality evaluation. An
alternative method consists in estimating the
asymmetry and kurtosis indexes, considering that the
values inside the 1.5 threshold indicate minor
variations to the normal, and consequently, they turn

to be suitable to carry out the EFA (George & Mallery,
2001). Another alternative approximation is the visual
analysis of g-q plot graphics; these graphics provide a
linearization of the normal distribution and allow to
determine whether the compiled data adjust
reasonably to a normal distribution.

The assumption of relations linearity becomes
fundamental in the EFA, since the values of
correlation coefficient can only be interpreted when
the relations pattern among the variables is linear
(Batista Foguet & Gallart, 2000). In fact, in the case
there exist deviations in the linear pattern the
magnitude of the correlation coefficients reduces
significantly. This assumption can be evaluated by
testing visually the matrix diagrams of dispersion. If it
is observed that the points are organized along a
straight line, the assumption of relations linearity can
be maintained (Hair, Anderson, Tatham, & Black,
1999). To evaluate statistically this assumption, a
Curve Estimation can be carried out through a
Multiple Regression Analysis. This technique was
introduced into psychology by Cohen (1978), and it
consists in evaluating the nature of the relation
between variables by adding powers (linear,
quadratic or cubic) to the regression equation and by
checking whether those powers improve significantly
the prediction or not. If significant results are not
achieved by using the linear functions, but they are by
applying quadratic functions, it can be determined
that there is no linear relation among the variables.

Finally, it is advisable to carry out a
multicollinearity diagnostic between variables or
items in order to identify elevated or redundant
correlations. Even though the EFA technique requires
intercorrelation between variables, it is probable that
the analysis will weaken and that an unstable factorial
solution will be obtained if these variables are
superior or equal to .90 (Martinez Arias, 1999). To
evaluate the multicollinearity, it is only necesary that
the correlation matrix be observed taking into
account the existence of values equal or superior to
.90. A more precise collinearity analysis can be carried
out by tolerance indices and their reciprocal value, the
Variance Inflation Factor (VIF). Such measures signal
the degree to which each variable is explained by
other variables. Small tolerance (lower than .10) and
elevated values of VIF (superior to .10) denote high
collinearity.

In addition to the compliance with the statistical
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assumptions required by the EFA, there are some
additional requests of prime importance to this
analysis. Since the EFA is based on the matrix of
intercorrelations and it is not used as a statistical
hypothesis test, it is essential that the sample is large
to ensure a minor sampling mistake. In fact, if working
with small samples, it is more likely that correlations
could vary from one sample to another, factors could
be unstable and results could be misleading (Blalock,
1966). The factor analysis must be carried out by using
large samples, of about 300 participants, in order to
obtain useful and rather stable results (Tabachnick &
Fidel, 2001). Ideally, there should be at least 10
participants per variable (or item, in the case of tests),
and at least five per item (Nunnally & Bernstein, 1995).
Additionally, it is advisable to carry out a different
factor analysis depending on the sex, when it is dealt
with very large samples (Kline, 2000).

After applying the test to the investigation
sample, and before starting the factor analysis, it must
be determined whether the items are interrelated
enough for this method to be successfully applied
(Comrey, 1973). There are some statistical tests that
can be applied with this end, and the most
widespread are the Bartlett’'s Test of Sphericity and
the Kaiser-Meyer-Olkin (KMO) Measure of Sampling
Adequacy. The Bartlett's Test of Sphericity allows
evaluatingthe null hypothesis which confirms that the
variables are not correlated. To do this, it compares
the intercorrelation matrix of the collected data with
an identity matrix in which all the terms in the
diagonal are units and the rest of the terms are zeros.
If the values obtained from such comparison turn to
be significant in a p < .05 level, the null hypothesis is
rejected and the variables are considered
intercorrelated enough to carry out the EFA (Everitt &
Wykes, 2001). Since this test can show significant
results even if there are no considerable correlations
between variables, it is advisable to additionally apply
the KMO measure. This is an average index of the
terms in the diagonal of the correlation matrix of the
anti-image, which contains the negative values of the
partial correlation coefficients of the variables. The
logic of the KMO index is that if the variables share
common factors, the partial correlation coefficients
must be small, and consequently, the values of the
matrix diagonal must be elevated, which means that if
the proportion of large coefficients is elevated in the
matrix, there is more interrelation between variables

(Sierra Bravo, 1981). The KMO is interpreted similarly
as the reliability coefficients, but only with a range
from 0 to 1, and considering as appropriate a value
equal or superior to .70, which suggests a successful
interrelation between items (Hair et al., 1999). Only
after having verified the assumptions and the
requests of the analysis it is fair to apply the EFA in its
different versions.

3. Methods of Factor Number Extraction and
Determination

After verifying the compliance of the
assumptions, a factor extraction method must be
selected. While there are various methods available in
the widespread information programs of statistical
analysis (e.g., SSPS), in practice the most commonly
used methods of exploratory factor analysis are two:
Principal Components and Principal Axis (Factoring)
Method (Khan, 2006). It is necessary to explain some
principles that will allow us to understand the basic
differences between both methods. As noted before,
the factor analysis is an analytic method of
condensation of the total variance in response to
variables (or items, in the case of psychological tests).
This variance has three main elements: a) the
common variance (or communality), which is the
proportion of variance of variables that is explained
by common factors; b) the specific variance, that is the
percentage of particular variance of each variable; and
¢) the error variance, which is the percentage of non-
explained variance, attributable to the measuring
error. The Principal Components Method explains the
major possible quantity of variance in the collected
data. Therefore, this method analyzes the total
variance associated with variables, including the
specific variance and the error variance.

However, the Principal Axis Factoring Method
considers only the common variance between
variables, or the covariance, excluding the specific
variance and the variance attributable to the
measuring error (Tabachnick & Fidell, 2001). The
Principal Components Method is easier to understand
than the Principal Axis Factoring Method, which is
maybe the reason for its popularity, particularly when
a significant group of items is analyzed in order to
develop new scales or inventories (Merenda, 1997). If
the factor analysis is applied to obtain a theoretical
solution, non-contaminated by the error and specific
variances, the Principal Axis Factoring Method is the
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most appropriate alternative (Tabachnick & Fidell,
2001). Nevertheless, when the tests have appropriate
reliability, the differences among the factor solutions
obtained in each method tend to be of less
importance (Kline, 2000). An example of this
assertiveness can be clearly observed on Table 1, in
which the results obtained after carrying out an EFA
of a Self-Efficacy Scale for the Performance of
University Entrants are represented (Medrano, 2009).
The values of the components matrix were obtained

Table 1.

by using the Principal Components Method as an
extraction method, while the values of the factor
matrix were obtained by applying the Principal Axis
Factoring Method. Finally, in the last column, the
Cronbach's alpha values (a) of the scale are presented
if the item is deleted. For this reason, such values
must be considered inversely, that is to say, the more
a, the less internal consistency is given by the item.

Comparison of the Principal Components Method and the Principal Axis Factoring Method considering the reliability of the

items (Cronbach's a values).

Scale Items EAR-I

Component Matrix

Factor Matrix Alpha value if the item is deleted

Passing the College Entrance Exam 81
Passing with an average superior to 5 .88
Passing with an average superior to 6 .94
Passing with an average superior to 7 .93
Passing with an average superior to 8 91
Passing with an average superior to 9 81

75 .94
.84 93
.94 92
93 92
.89 92
.76 .94

As can be seen, those items that contribute minor
internal consistency to the scale, which indicates that
are less reliable, show greater differences in the values
obtained in each extraction method. On the contrary,
the most reliable items present almost no variations
among the extraction methods. These results validate
Kline's assertion (2000) that differences among factor
solutions obtained by each method are minimal when
the scales present a high reliability. Nevertheless,
some authors suggest that the Principal Components
Method is not highly recommendable despite
obtaining similar results, since it is a method of data
reduction and not an EFA technique. Furthermore, it
does not discriminate between common and specific
variance, thus tends to inflate the values of the matrix
of components (Costello & Osborne, 2005).

Another extraction method of factors that is
worth considering is the Method of Maximum
Probability (MP), or also known as Maximum
Likelihood Method. Although the method of MP is
less used in the explanatory factor analysis (Kahn,
2006), plenty of authors agree that MP is the best
choice when data present a multivariate normal
distribution (Byrne, 2001; Costello & Osborne, 2005).
The main benefit of MP is that allows to estimate the
statistical significance of the factorial weights and
produces confidence intervals from  them.
Nevertheless, when data distribution distance from a

multivariate normal distribution, it is preferable not to
use MP; maybe for that reason, in practice it is one of
the extraction methods less used (Kahn, 2006). In
short, the Principal Axis Factoring Methods and MP
are the methods that provide better results and the
choice of one or the other will depend on the
distribution of the data collected; the Principal Axis
Factoring Method is the recommended method when
the assumption of multivariate normality is violated,
and MP is the recommended method when such
assumption is respected (Costello & Osborne, 2005).
The extraction of the right number of factors is
one of the most problematic decisions of the factor
analysis (Cattell, 1966). The usage of a unique criterion
may lead to overestimate or underestimate the real
number of factors, and for this reason, it is
recommended to use a set of criteria to identify the
number of the underlying factors on the
psychological scales. If the option is to extract more or
less factors (over and under-extraction), the over-
extraction is less risky because it is less likely to
produce mistakes on the measurement (Reise, Waller,
& Comrey, 2000). Nevertheless, the decision about the
number of factors that will be extracted shall always
be supported by empirical evidence. A widely used
method, which appears in the SPSS program, is the
Kaiser rule of extraction of factors with eigenvalues
superior to 1 (Kaiser, 1960). The square of the
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correlation between a variable and a factor is the
proportion of variance explained by such variable. If
all the squares of the variable factorial weights in one
factor (column of the factorial matrix) are added up,
the eigenvalue of that factor is obtained, which
expresses the magnitude of variance explained by
that factor. The point of cut of 1 is determined
because variables are standardized with the variance
equal to 1 and it would be inappropriate to interpret a
factor that explains less variance than the variance
explained by a particular variable (Kahn, 2006). If we
divide the eigenvalue of a factor by the number of
variables, and we multiply that value by 100, we
obtain the variance percentage explained by that
particular factor.

The main problem of this rule is that it generally
leads to the extraction of too many factors,
particularly in tests with plenty of items (50 or more).
Another criterion for extraction is the percentage of
variance explained by the factorial structure obtained
(accumulated variance of factors extracted in set). In
this case, it is recommended that the factorial solution
explains, at least, a 50% of the total variability of the
test response (Merenda, 1997).

The percentage of explanation of variance could
be a necessary condition, but in practice it does not
constitute a decisive criterion, because we can have
many alternative factorial solutions with appropriate
percentages of variance explained and, consequently,
we will not know which one to choose. In any case,
the Kaiser rule and the percentage of variance
explained are complementary procedures, but they
are not essential in the majority of cases.

The criterion of extraction of factors most widely
used nowadays is the scree test or scree graph
(Cattell, 1966). The scree test a graphic representation
of the magnitude of eigenvalues, and it contributes to
identify the ideal number of factors that should be
extracted. On the horizontal axis, or ordinate, the
eigenvalues are represented, and on the vertical axis,
or abscissa, the number of factors. On the resulting
graph, a base straight line is drawn at the same height
of the last eigenvalues (the smaller ones), and those
that are above that base line will indicate the number
of factors that will be retained. Cattell (1966) called
this graph “scree” due to its resemblance to the
profile of a mountainside, where the waste rock of the
base is similar to the irrelevant factors of the solution,
metaphorically not solid. The scree test is a procedure

with a component of subjectivity, but its appropriate
reliability has been verified (Kline, 2000). In general,
the point of cut for the number of factors that will be
extracted is determined by the first change of slope in
the graph. The residual eigenvalues are located to the
right of the graph; they form a slightly inclined plain.
In contrast, the eigenvalues that explain most part of
the variance are located to the left and they form a
steep slope (Figure 2).

Eigenvalues

T T T T T T T T T T T T T T T T T°T
14 7 01316 198 22 25 26 31 34 37 40 43 46 49 52 55

Factors
Figure 2. Scree Test

Figure 2 shows the sedimentation graph
obtained from the EFA from the “Inventario de
Autoeficacia para Inteligencias Multiples" (Pérez,
Beltramino & Cupani, 2003). In general, it is
recommended to review the graph from left to right
until the point of inflection in which the eigenvalues
stop forming a slope and start generating a slightly
inclined fall is located. This fall is represented in the
dotted line and it is called criterion of contrast fall
(Hair et al. 1999). As can be seen, even though the
Kaiser rule indicated the existence of 12 factors
(dotted line), the scree test suggests that only 8 of
them should be interpreted since the fall of the graph
is interrupted from the ninth eigenvalue on. In most
cases the scree test is reliable, but sometimes it results
difficult to determine the exact number of factors by
just seeing the graph, especially when there are
plenty of factors or changes of direction of the slope.

Horn (1965) proposed another method, the
parallel analysis, which seems to be one of the best
+alternatives to decide the number of factors that will
be extracted. The parallel analysis generates
eigenvalues of a matrix of random data but with the
same number of variables and cases as the original



Pérez, E.R.y Medrano, L. / RACC, 2014, Vol. 6, N°3, 37-46 77

matrix. Even though the parallel analysis cannot be
developed from the usual statistic programs (e.g.
SPSS, SAS), Thompson and Daniel (1996) developed a
syntax that can be executed simply from SPSS. In the
parallel analysis, the eigenvalue of each factor in the
real data is compared to the corresponding
eigenvalue of the random data on a chart. To decide
the number of factors that will be extracted, the
eigenvalue of the real data with magnitude superior
to the eigenvalue of the simulated data is identified.
If, for example, the third eigenvalue of the real data
has a magnitude of 3.131 and the third value of the
simulated data has a magnitude of 2.431, and the
fourth eigenvalue is superior in the data simulated,
three factors must be interpreted. The logic of the
procedure is that only real factors that explain more
variance than the random must be interpreted (Kahn,
2006).

4, Rotation and Interpretation of Factors

The initial result of the factor analysis is a factor
matrix not rotated, that is to say, it is the matrix of
correlations between variables and factors. This initial
factor matrix is difficult to interpret and, in almost all
the cases where more than one factor is extracted, it is
essential to obtain an additional matrix of rotated
factors (Carroll, 1953). Consequently, after extracting
the initial factors, these initial factors are subject to a
procedure called rotation (when there is more than
one factor in the solution). The term rotation comes
from the graphic representation and the geometrics
of the factor analysis. Indeed, factors can be
represented as reference axis and the factorial
weights (correlations) of each variable can be
indicated in the corresponding axis. The rotation is
carried out so as the factor solution approximates to
what it is determined as simple structure; it is worth
mentioning that each item has a correlation that is
close to 1, that could be possible with one of the
factors and correlations close to 0 with the remaining
factors. The researcher rotates the factors with the
purpose of eliminating the important negative
correlations and reducing the number of correlations
of each item in the diverse factors. Naturally, simple
structures are never found in empiric data, but a
solution approximated to that theoretical concept is
reached. Rotations can be orthogonal or oblique; and
two widely used methods are Varimax (Kaiser, 1958)
and Promax (Gorsuch, 1983), respectively; although

there are others available in the statistic programs
(e.g., SPSS). Solutions provided by the oblique
rotation methods are more consistent with the
structure of the psychological variables that are
generally interrelated. Absolute orthogonality is only
theoretical and, for practical reasons, it is understood
that a solution is orthogonal when all correlations of
factors are lower than .32. Tabachinick and Fidell
(2001) propose to do an initial oblique rotation as a
filter (e.g., Promax), and to obtain the correlation
matrix between factors. If we notice any correlation
exceeding .32 between factors, we should choose an
oblique rotation. Otherwise, we should choose an
orthogonal one. Following these recommendations,
Medrano (2009) did an EFA of the Positive and
Negative Scale of Affectivity (PANAS). When applying
a Promax rotation at first instance, it was noticed that
the underlying factors had an invert correlation of r =
-.33. Based on that, we continued with the Promax
oblique rotation. The obtained results are shown in
Table 2.

Rotations place the variables closer to the
designed factors to explain them; they concentrate
the variance of variables on fewer factors and
generally provide a means to facilitate the
interpretation of the factor solution obtained (Kasier,
1958). Today, there are several executable algorithms
in the statistical packages that generate the rotated
matrix without resorting to graphic rotation
procedures (Thompson, 2004). With these algebraic
operations (multiplication of unrotated coefficients by
a set of derived constants by means of trigonometric
functions), the structure of the factor matrix is
modified and easier to understand due to the increase
of the extreme positive correlations (low and high),
approaching the simple ideal structure that we have
mentioned. The analytic rotation procedures have
replaced the geometric ones because of their
simplicity (executed by software) and objectivity (it is
more difficult to achieve identical results among
several researchers when graphic rotation takes
place). Correlations between item and factor should
be at least of .35 and there should not be correlation
higher than .30 of that variable with another factor to
obtain an estimate solution to the simple structure. If
not, we shall be retaining complex items, as well as
unsatisfactory and difficult to interpret factor
solutions.

It should be taken into account that if we have
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used an oblique rotation (e.g., Promax), we will not
obtain a rotated matrix (the same case as orthogonal
rotation) but two, which are called structure and
configuration matrix. The correlations of each variable
are present in the structure matrix with the factor or
structural coefficients. However, in the configuration
matrix the observed coefficients are analogous to the
beta coefficients of the Multiple Regression Analysis.

The configuration coefficients indicate the relative
importance of each factor to explain the individual
score of each variable, controlling the remaining
factors. Most of researchers interpret the
configuration matrix because it is easier (Tabachnick &
Fidell, 2001), but it is advisable to pay attention to
both matrixes so as to better interpret results
(Thompson, 2004).

Table 2.
Promax rotation of PANAS scale, comparison of coefficients of the unrotated matrix, configurational matrix and structure
matrix.
Unrotated Factor Matrix Configurational Matrix Structure Matrix
PANAS scale Factor 1 Factor 2 Factor 1 Factor2 Factor 1 Factor 2
Sorrowful 44 22 48 12 47 .10
Guilty .53 .05 .53 -.06 .53 -.08
Scared .78 .28 .83 1 .82 .08
Irritable 52 -.05 .50 -16 .50 -18
Ashamed .57 .05 .56 -.07 .56 -.09
Nervous .67 .20 .70 .05 .70 .03
Uneasy .70 .04 .69 =12 .69 -14
Fearful 79 23 .82 .05 .82 .02
Strong -27 .52 -13 .57 -15 .57
Enthusiastic -14 .70 .04 71 .02 71
Proud -.16 .64 .01 .66 -02 .66
Inspired -.08 .60 .08 .61 .06 .60
Determined -40 46 -.28 .54 -29 .55
Attentive -.08 .68 .09 .69 .07 .68
Active -27 .67 -10 71 -12 71

The final task of the factor analysis is to interpret
and define factors. This is achieved by examining the
rotated matrix (provided that there are more than one
factor) the high and low patterns of correlation of
each variable with its different factors and using
specially the theoretical knowledge about the
variables included in the analysis. In the example of
Table 2, it can be observed that the factor 1 has higher
correlations with items such as: fearful, scared,
nervous and gquilty. Thus, the factor could be
interpreted as “Negative Affect”. On the other hand,
the second factor has elevated correlations with items
such as: enthusiastic, attentive, active and proud.
Thus, the second factor could be interpreted as
“Positive Affect”.

In general, it is recommended that each factor
have at least four items with equal or higher
correlations to .40 to be interpreted. Furthermore, it
should be taken into account the higher item-factor
correlations to infer the name of each factor (Glutting,

2002). When the realized rotation has been oblique, it
is possible to continue with the factor analysis and to
obtain “factors from factors." In other words, we can
make a factor analysis and draw oblique factors of
initial order to make a factor analysis of the
correlation matrix between factors and to derive
second order or higher factors.

5. Conclusions

In this article, some of the steps and critical
decisions in the development of an EFA have been
synthetically revised, i.e., assumptions required, factor
extraction methods, criteria to determine the number
of factors and rotation methods and interpretation of
factors. It is important to notice that generally the
exploratory factor analysis is the most classic and well
known statistical procedure to examine the relation
between a set of observable variables and
unobservable underlying factors. Thus, this method of
interdependence identifies the existence of the
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underlying factors of important theoretical value
starting from relations between observable variables.
However, it is important to notice one limitation of
EFA. As mentioned before, this technique is supposed
to delimit the number of indicators that presumably
measure one construct empirically, that is to say, the
EFA does not require a specification previous to the
theoretical model. In general, users of EFA limit
themselves to hypothesize the number of factors that
are expected to obtain and if they will or will not be
related (Pérez-Gil, Chacén Moscoso, & Moreno
Rodriguez, 2000). Consequently, the exclusive use of
EFA represents a weak approximation to the
definition or validation of a construct. As Byrne (2001)
says, EFA should be complemented with a
subsequent Confirmatory Factor Analysis (CFA). In
fact, the exclusive use of EFA may lead us to obtain
only empiric structures, depending on the samples
and selected items, not easily replicable.

The CFA is a complementary and appropriate
approximation to the EFA when researchers have
certain knowledge of the underlying theoretical
structure. Thus, based on theoretical and empiric
criteria, the relationships between the observable and
latent variables are postulated a priori to evaluate
later their statistic meaning and the adjustment of the
model proposed to collected data (Batista Foguet &
Gallart, 2000). Beyond mathematic and statistic
differences between EFA and CFA, the main
difference is that confirmatory approximation does
not realize on a vacuum, but is found within a theory
that manages the definition of construct. This
approximation goes from theory to practice, which is
why it is a stronger approximation of the definition or
validity of construct. Nowadays, even when CFA
procedures are very well developed, EFA is still used
for confirmatory reasons (Pérez-Gil, Chacén Moscoso,
& Moreno Rodriguez, 2000). It is important to notice
that EFA is a valid technique with exploratory goals
that will lead to random and likely unstable results if
the construct to validate or define is unknown, since
this procedure depends entirely on the circumstances
and collected data. In this sense, Eynseck says that
“the factor analysis is a good servant but a bad
master”.
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