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ABSTRACT 

 

Reaction times (RTs) are an important source of information in experimental psychology. Classical 

methodological considerations pertaining to the statistical analysis of RT data are optimized for analyses of aggregated data, 

based on subject or item means (c.f., Forster & Dickinson, 1976). Mixed-effects modeling (see, e.g., Baayen, Davidson, & 

Bates, 2008) does not require prior aggregation and allows the researcher the more ambitious goal of predicting individual 

responses. Mixed-modeling calls for a reconsideration of the classical methodological strategies for analysing rts. In this 

study, we argue for empirical exibility with respect to the choice of transformation for the RTs. We advocate minimal a-

priori data trimming, combined with model criticism. We also show how trial-to-trial, longitudinal dependencies between 

individual observations can be brought into the statistical model. These strategies are illustrated for a large dataset with a 

non-trivial random-effects structure. Special attention is paid to the evaluation of interactions involving fixed-effect factors 

that partition the levels sampled by random-effect factors. 

 

Key words: Reaction times, distributions, outliers, transformations, temporal dependencies, linear mixed-effects 

modeling. 

 

RESUMEN 

 

El análisis de los tiempos de reacción (RTs) constituyen una valiosa herramienta en la psicología 

experimental. Las consideraciones metodológicas clásicas relacionadas al análisis estadístico de los datos obtenidos 

con los RT son optimizados para el análisis de datos agregados basados en los valores de la media (c.f., Forster & 

Dickinson, 1976). La modelación de efectos mixtos (Baayen, Davidson, & Bates, 2008), no requieren agregaciones a 

priori y permiten al investigador un resultado más robusto en la predicción de respuestas individuales. La modelación 

mixta reconsidera  las estrategias metodológicas  clásicas para el análisis de los RTs. En este estudio, nosotros 

apoyamos la flexibilidad empírica en lo que refiere a la escogencia del método para la transformación de los RTs. 

Adicionalmente nos aproximamos  a un mínimo de datos parciales para criticar el modelo. Además, mostramos como 

la evaluación y el análisis de la dependencia  entre las observaciones individuales pueden ser consideradas dentro el 

modelo estadístico. Estas estrategias se ilustran para un gran conjunto de datos sin efectos aleatorios simples en su 

estructura. Por último, se presta especial atención a la evaluación de las interacciones que contienen los efectos mixtos  

que particionan  los niveles de muestreo  por factores de efectos aleatorios . 
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Reaction time (RT), also named response time or 

response latency, is a simple and probably the most widely 

used measure of behavioural response in time units (usually 

in milliseconds), from presentation of a given task to its 

completion. Chronometric methods that harvest RTs have 

played an important role in providing researchers in 

psychology and related fields with data constraining models 

of human cognition. In 1868, F. C. Donders ran a pioneer 

experiment in psychology, using for the first time RTs as a 

measure of behavioural response, and proved existence of 

the three types of RTs, differing in latency length (Donders, 

1868/1969). Since that time psychologists (c.f., Luce, 1986, 

etc.) agree that there exist: simple reaction times, obtained 

in experimental tasks where subjects respond to stimuli 

such as light, sound, and so on; recognition reaction times, 

elicited in tasks with two types of stimuli, one to which 

subjects should respond, and the other which serve as 

distractions that should be ignored (today, this task is 

commonly referred to as a go/no-go task); and choice 

reaction times, when subjects have to select a response 

from a set of possible responses, for instance, by pressing 

an letter-key upon appearance of a letter on the screen. In 

addition, there are many others RTs which can be obtained 

by combining three basic experimental tasks. For example, 

discrimination reaction times are obtained when subjects 

have to compare pairs of simultaneously presented stimuli 

and are requested to press one of two response buttons. This 

type of RT represents a combination of a recognition and a 

choice task. Similarly, decision reaction time is a mixture of 

simple and choice tasks, having one stimulus at a time, but 

as many possible responses as there are stimulus types. 

 

From the 1950s onwards, the number of 

experiments using RT as response variable has grow 

continuously, with stimuli typically obtained from either 

the auditory or visual domains, and occasionally also from 

other sensory domains (see for example one of the 

pioneering study by Robinson, 1934). Apart from 

differences across sensory domains, there are some general 

characteristics of stimuli that affect RTs. First of all, as 

Luce (1986) and Piéron (1920) before him concluded, RT is 

a negatively decelerating function of stimulus  intensity: the 

weaker the stimulus, the longer the reaction time. After the 

stimulus has reached a certain strength, reaction time 

becomes constant. To model such nonlinear trends, modern 

regression offers the analyst both parametric models 

(including polynomials) as well as restricted cubic splines 

(Harrell, 2001; Wood, 2006). 

 

Characteristics of the subjects may also influence 

RTs, including age, gender, handedness (c.f., MacDonald, 

Nyberg, Sandblom, Fischer, & Backman, 2008; Welford, 

1977, 1980; Boulinguez & Barthélémy, 2000). An example 

is shown in Figure 1 for visual lexical decision latencies for 

older and younger subjects (see Baayen, Feldman, & 

Schreuder, 2006; Baayen, 2010, for details). 

Finally, changes in the course of the experiment 

may need to be taken into account, such as the level of 

arousal or fatigue, the amount of previous practice, and so 

called trial-by-trial sequential effects - the effect of a given 

sequence of experimental trials (c.f., Broadbent, 1971; 

Welford, 1980; Sanders, 1998). 

 

In the present paper we highlight some aspects of 

the analysis of chronometric data. Various guidelines have 

been proposed, almost always in the framework of factorial 

experiments in which observations are aggregated over 

subjects and/or items (Ratcliff, 1979; Luce, 1986; Ratcliff, 

1993; Whelan, 2008). In this paper, we focus on data 

analysis for the general class of regression models, which 

include analysis of variance as a special case, but also cover 

multiple regression and analysis of covariance (see Van 

Zandt, 2000, 2002; Rouder & Speckman, 2004; Rouder, Lu, 

Speckman, Sun, & Jiang, 2005; Wagenmakers, van der 

Maas, & Grasman, 2008, for a criticism and remedies of 

current practice). We address the analysis of RTs within the 

framework of mixed-effects modeling (Baayen et al., 

2008), focusing on the consequences of this new approach 

for the classical methodological guidelines for responsible 

data analysis. 

 
Figure 1. Older subjects (grey) have longer response 

latencies in visual lexical decision than younger subjects 

(black), with a somewhat steeper slope for smaller word 

frequencies ('stimulus intensity'), and a smaller frequency 

at which the effect of stimulus intensity begins to level o_ . 

The nonlinearity was modeled with a restricted cubic spline 

with 5 knots. 
 

 
 
Methodological concerns in reaction time data analysis  

 

Methodological studies of the analysis of reaction 

times point out at least two important violations of the 

preconditions for analysis of variance and regression. First, 

distributions of RTs are often positively skewed, violating 
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the normality assumption underlying the general linear 

model. Second, individual response latencies are not 

statistically independent - a trial-by-trial sequential 

correlation is present even in the most carefully controlled  

conditions. Additionally, and in relation to the first point, 

empirical distributions may be characterized by overly 

influential values that may distort the model fitted to the 

data. We discuss these issues in turn. 

 

Reaction time distributions 

 
There is considerable variation in the shape of the 

reaction time distributions, both at the level of individual 

subjects and items, and at the level of experimental tasks. 

Figure 2 illustrates micro-variation for a selection of items 

used in the visual lexical decision study of Milin, Filipovic 

Durdevic, and Moscoso del Prado Martín (2009). For some 

words, the distribution of RTs is roughly symmetric (e.g., 

\zid" /wall/, \trag" /trace/, and \drum"/road/). Other items 

show outliers (e.g., \plod", /agreement/, and \ugovor", 

/contract/). For most items, there is a rightward skew, but 

occasionally a left skew is present (\brod", /ship/). 

 

While modern visualization methods reveal 

considerable distributional variability (for an in depth 

discussions of individual RT distributions consult Van 

Zandt, 2000, 2002), older studies have sought to 

characterize reaction time distributions in more general 

terms as following an Ex-Gaussian (the convolution of 

normal and exponential distributions), an inverse-Gaussian 

(Wald), a log-normal, or a Gamma distribution (see, e.g., 

Luce, 1986; Ratcliff, 1993). Figure 3 illustrates the 

problems one encounters when applying these proposals for 

the reaction times in visual lexical decision elicited from 16 

subjects for 52 Serbian words. With correlation between 

observed and expected quantiles we can certify that the 

Wald's distribution (the Inverse Gaussian) seems to fit the 

data the best: . The 

Ex-Gaussian distribution closely follows: 

, while the Log-normal and 

the Gamma distributions provide somewhat weaker fits: 

 and 

, respectively. 

 

Although Figure 3 might suggest the inverse 

normal distribution is the optimal choice, the relative 

goodness of fit of particular theoretical models varies 

across experimental tasks, however. To illustrate this point, 

we have randomly chosen one thousand RTs from three 

priming experiments using visual lexical decision, sentence 

reading and word naming. Figure 4 indicates that the 

Inverse Gaussian provides a better fit than the Log-Normal 

for the RTs harvested from the lexical decision experiment, 

just as observed for lexical decision in Figure 3. However, 

for sentence reading, the Log-Normal outperforms the 

Inverse Gaussian, while both theoretical models provide 

equally good fits for the naming data, where even the 

Gamma distribution approaches the same level of goodness 

of fit (r = 0:995). 

 

Figure 2. Estimated densities for the distributions of 

reaction times of selected items in a visual lexical decision 

experiment. 

 

 
 
Figure 3. Goodness of fit of four theoretical distributions to 

response latencies in visual lexical decision. 

 

 
 

 

Thus, it is an empirical question which theoretical 

model provides the best approximation for one's data. Two 
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considerations are relevant at this stage of the analysis. 

First, in analyses aggregating over items to obtain subject 

means, or aggregating over subjects to obtain item means, 

simulation studies suggest that the Inverse Gaussian may 

outperform the Log-Normal Ratcliff (1993). Given the 

abovementioned variability across subjects, items, and 

tasks, it should be kept in mind that this superiority may be 

specific to the assumptions built into the simulations - 

assumptions that may be more realistic for some subjects, 

items, and tasks, than for others. The Ex-Gaussian 

distribution (Luce, 1986) is a theoretically interesting 

alternative, and one might expect it to provide better fits 

given that it has one parameter more than Inverse Normal 

or Log-Normal. Nevertheless, our examples  suggest it is 

not necessarily one's best choice - the power provided by 

this extra parameter may be redundant. Of course, for 

models with roughly similar goodness of fit, theoretical 

considerations motivating a given transformation should be 

given preference. 

 

A second issue is more practical in nature. When 

RTs are transformed, a fitted general linear model provides 

coefficients and fitted latencies in another scale than the 

millisecond time scale. In many cases, it may be sufficient 

to report the data on the transformed scale. However, it may 

be necessary or convenient to visualize partial effects on the 

original millisecond scale, in which case the inverse of the 

transformation is required. This is no problem for the Log-

Normal and the Inverse-Gaussian transforms, but back-

transforming an Ex-Gaussian is far from trivial, as it 

requires Fourier transformations and division in the Fourier 

domain, or Maximum Entropy deconvolution (see, e.g., 

Wagenmakers et al., 2008; Cornwell & Evans, 1985; 

Cornwell & Bridle, 1996; Beaudoin, 1999, and references 

cited there). 

 
Outliers 

 

Once RTs have been properly transformed, the 

question arises of whether there are atypical and potentially 

overly influential values that should be removed from the 

data set. Strictly speaking, one should differentiate between 

two types of influential points: the outliers have acceptable 

value of the \input" variable while the value of the 

\response" is either too large or too small; the extreme 

values are notably different from the rest of the \input" 

values. Thus, influential values are those outliers or 

extreme values which essentially alter the estimates, the 

residuals and/or the fitted values (more about these issues 

can be found in Hocking, 1996). By defining RT as the 

measure of behavioural response we implied that it may 

contain outliers and can be affected by extreme values. The 

question is how to diagnose them and to put them under 

explicit control.  

 

Figure 4. Variation in goodness of fit of the Log-

Normal and Inverse-Normal distributions across three 

experimental tasks. 

 

 
 

First of all, physically impossibly short RTs 

(button presses within 5 ms of stimulus  onset) and absurdly 

long latencies (exceeding 5 seconds in a visual lexical 

decision task with unimpaired undergraduate subjects) 

should be excluded. After that, more subtle outliers  may 

still be present in the cleaned data, however. Ratcliff (1993) 

distinguishes between two kinds of outliers, short versus 

long response outliers. According to Ratcliff, short outliers 

\stand alone" while long outliers \hide in the tail" (Ratcliff, 

1993, p. 511). Even if long outliers are two standard 

deviations above the mean, they may be difficult to locate 

and isolate. Unfortunately, even a single extreme outlier 

can considerably increase mean and standard deviation 

(Ratcliff, 1979). 

 

There are two complementary strategies for outlier 

treatment that are worth considering. Before running a 

statistical analysis, the data can be screened for outliers. 

However, after a model has been fitted to the data, model 

criticism may also help identify overly influential outliers. 

A-priori screening is regular practice in psycholinguistics. 
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By contrast, model criticism seems to be undervalued and 

underused. 

 

A-priori screening for outliers is a widely accepted 

practice in traditional by-subject and by-item analyses. It 

simply removes all observations that are at a distance of 

more than two standard deviations from the mean of the 

distribution. Nevertheless, there is a risk to this procedure. 

If the effect \lives" in the right tail of the distribution, as 

Luce (1986) discussed pointing out that the decision itself 

may behave as exponential - right-hand component of the 

distribution, then removing longer and long latencies may 

in fact reduce or cancel out the effect in the statistical 

analysis (see Ratcliff, 1993). Conversely, if the effect is not 

in the tail, then removing long RTs increases statistical 

power (c.f., Ratcliff, 1993; Van Zandt, 2002). For analyses 

using data aggregated over items or subjects, Ratcliff's 

advice is that cutoffs should be selected as a function of the 

proportion of responses removed. Up to 15% of the data 

can be removed, but only if there is no thick right tail, in 

which case no more than 5% of the data should be 

excluded. 

 

We note here that much depends on whether 

outliers are considered before or after transforming the 

reaction times. Data points that look like outliers  before the 

transformation is applied may turn out to be normal citizens 

after transformation. More generally, if the precondition of 

normality is well met, then outlier removal before model 

fitting is not necessary. 

 

In analyses requiring aggregating over items 

and/or subjects, the question arises  whether in the presence 

of outliers, the mean is the best measure of central 

tendency. It has been noted that as long as the distribution 

is roughly symmetrical, the mean will be an adequate 

measure of central tendency (c.f., Keppel & Saufley Jr., 

1980; Sirkin, 1995; Miller, Daly, Wood, Roper, & Brooks, 

1997). For non-symmetrical distributions, however, means 

might be replaced by medians (see, for example, Whelan, 

2008). The median is much more insensitive to the skew of 

the distribution, but at the same time it can be less  

informative. Van Zandt (2002) showed that the median is 

biased estimator of population central tendency when the 

population itself is skewed, although this bias is relatively 

small for samples of . At the same time, the results 

of Ratcliff (1993)'s simulations showed that the median of 

the untransformed RTs has much higher variability 

compared to the harmonic mean . 

Unfortunately, the harmonic mean is more sensitive to  

outliers and cutoffs then the median. If the noise is equally 

spread out across experimental conditions and if an 

appropriate cutoff is used, then the harmonic mean would 

be a beter choice than the median, while the median will be 

more stable if outliers are not distributed proportionally 

across conditions. 

 

While a-priori “agressive" screening for outliers is 

defendable for by-subject and by-item ANOVAs, critically 

depending on means aggregated over subjects or items, the 

need for optimizing central values before data analysis 

disappears when the analysis targets the more ambitious 

goal of predicting individual RTs using mixed-effects 

models with subjects  and items as crossed random-effect 

factors. The mixed-modeling approach allows for mild a-

priori screening for outliers, in combination with model 

criticism, a second important procedure for dealing with 

outliers. 

 

In the remainder of this study, we provide various 

code snippets in the open source statistical programming 

environment R (http://www.r-project.org/), which 

provides a rich collection of statistical tools. The dataset 

that we use here for illustrating outlier treatment is 

available in the languageR package as lexdec. Visual 

lexical decision latencies were elicited for 21 subjects 

responding to 79 concrete nouns. Inspection of quantile-

quantile plots suggests that a Inverse-Gaussian 

transformation is optimal. Quantile-quantile plots for the 

individual subjects are brought together in the trellis shown 

in Figure 5. 

 
> qqmath(~RTinv | Subject, data = lexdec) 

 

The majority of subjects come with distributions 

that do not depart from normality. However, as indicated by 

Shapiro tests for normality, there are a few subjects that 

require further scrutiny, such as subjects A3 and M1. 

 
> f = function(dfr) 

return(shapiro.test(dfr$RTinv)$p.value) 

> p = as.vector(by(lexdec, lexdec$Subject, f)) 

> names(p) = levels(lexdec$Subject) 

> names(p[p < 0.05]) 

[1] "A3" "M1" "M2" "P" "R1" "S" "V" 

 

Figure 6 presents the densities for the four subjects 

for which removal of a few extreme outliers failed to result 

in normality. The two top leftmost panels (subjects A3 and 

M1) have long and thin left tails due to a few outliers, but 

their removal results in clearly bimodal distributions, as can 

be seen in the corresponding lower panels. The density for 

subject M2 shows a leftward skew without outliers, but after 

removing some highest and lowest values  distribution gets 

two modes of almost equal hight. Conversely, the density 

for subject V is again bimodal before, and gently skewed to 

the left after the removal. 

 

Figure 5. By-subject quantile-quantile plots for the inverse-

transformed reaction times (visual lexical-decision). 
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Minimal trimming for subjects A3, M1, P, R1, 

S resulted in a new data frame (the data structure in R for 

tabular data), which we labeled lexdec2. With the 

trimming we lost 2.7% of the original data, or 45 data 

points. For comparison, we also created a data frame with 

all data points removed that exceeded 2 standard deviations 

from either subject or item means (lexdec3). This data 

frame comes with a loss of 134 datapoints (8.1% of the 

data). These data frames allow us to compare models with 

different outlier-handling strategies. (In what follows, we 

multiplied the inversely transformed RTs by -1000 so that 

coefficients will have the same sign as for models fitted to 

the untransformed latencies, at the same time avoiding very 

small values and too restricted range for the dependent  

variable.) 

 

A model fitted to all data, without any outlier 

removal: 

 
> lexdec.lmer = lmer(-1000 * RTinv ~ 

NativeLanguage + Class + Frequency + 

+ Length + (1 | Subject) + (1 | Word), data = 

lexdec) 

> cor(fitted(lexdec.lmer), -1000 * 

lexdec$RTinv)^2 

[1] 0.5171855 

 

performs less well in terms of   than a model with the 

traditional aggressive a-priori data screening: 

 
> lexdec.lmer3 = lmer(-1000 * RTinv ~ 

NativeLanguage + Class + 

Figure 6. Density plots for subjects for which the Inverse-

Gaussian transform does not result in normality (visual 

lexical-decision). Upper panels represent untrimmed data, 

while lower panels depict the distributions for two subjects 

after minimal trimming. 

 
 

 
 
 

 

+ Frequency + Length + (1 | Subject) + (1 | 

Word), data = lexdec3) 

> cor(fitted(lexdec.lmer3), -1000 * 

lexdec3$RTinv)^2 

[1] 0.59104 

 

while mild initial data screening results in a model with an 

intermediate : 

 
> lexdec2.lmer = lmer(-1000 * RTinv ~ 

NativeLanguage + Class + 

+ Frequency + Length + (1 | Subject) + (1 | 

Word), data = lexdec2) 

> cor(fitted(lexdec2.lmer), -1000 * 

lexdec2$RTinv)^2 

[1] 0.5386757 

 

Inspection of the residuals of this model 

(lexdec2.lmer) shows that it is stressed, and fails to 

adequately model longer response latencies, as can be seen 

in the lower left panel of Figure 7. To alleviate the stress 

from the model, we remove data points with absolute 

standardized residuals exceeding 2.5 standard deviations: 

 
> lexdec2A = 

lexdec2[abs(scale(resid(lexdec2.lmer))) < 2.5, 

] 

> lexdec2A.lmer = lmer(-1000 * RTinv ~ 

NativeLanguage + Class + 

+ Frequency + Length + (1 | Subject) + (1 | 

Word), data = lexdec2A) 

> cor(fitted(lexdec2A.lmer), -1000 * 

lexdec2A$RTinv)^2 

[1] 0.5999562 

 

Figure 7. Quantile-quantile plots for the models with 

different strategies of outlier removal. 
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The last model, which combines both mild initial 

data screening and model criticism, outperforms all other 

models in terms of . Compared to the traditional 

aggressive data trimming procedure, it succeeds in doing so 

by achieving reasonable closeness to normality, while 

removing fewer data points (82 versus 134). The quantile-

quantile plot for the residuals of this model is shown in the 

lower right panel of Figure 7. 

 

What this example shows is that a very good 

model can be obtained with minimal a-priori screening, 

combined with careful post-fitting model criticism based on 

evidence that the residuals of the fitted model do not follow 

a normal distribution. If there is no evidence for stress in 

the model fit, then removal of outliers is not necessary and 

should not be carried out. Furthermore, there are many 

diagnostics for identifying overly influential outliers, such 

as variance inflation factors and Cook's distance, which 

may lead to a more parsimoneous removal of data points 

compared to the procedure illustrated in the present paper. 

It simply errs on the conservative side, but allows the 

researcher to quickly assess  whether or not an effect is 

carried by the majority of data points. 

 

We note here that it may well be that the data 

points removed due to model criticism reflect decision 

processes distinct from the processes subserving lexical 

retrieval, which therefore may require further scrutiny when 

these decision processes are targeted by the experiment. 
 

Figure 8. Autocorrelation functions for the subjects in a 

present-to-past word naming study. Grey horizontal lines 

represent the upper bound of an approximate 95% 

confidence interval. 

 

 
 

Temporal dependencies 

 

The third issue that needs to be addressed when 

modeling reaction times is the temporal dependencies that 

exist between successive trials in many experiments 

(Broadbent, 1971; Welford, 1980; Sanders, 1998; Taylor & 

Lupker, 2001, etc.). Often, RTs at trial  correlate with RT 

at trial , for small . This temporal auto-dependency 

can be quantitatively expressed in terms of the 

autocorrelation coefficient. In the case of reaction times, 

there often is an inverse relationship of the distance or lag 

between predecessor/successor RT and the coefficient of 

autocorrelation: the longer the lag the weaker the 

autocorrelation. 

 

To illustrate the phenomenon of trial-by-trial 

dependencies, we consider data from a word naming study 

on Dutch (Tabak, Schreuder, & Baayen, 2010a), in which 

subjects were shown a verb in the present (or paste) tense 

and were requested to name the corresponding past (or 

present) tense form. Figure 8 shows the autocorrelation 

functions for the time series of RTs for each of the subjects, 

obtained by applying acf.fnc function from the 

languageR package (version 1.0), which builds on the acf 

function from stats package in R and lattice graphics. 

 
> acf.fnc(dat, group = "Subj", time = "Trial", 

x = "RT", plot = TRUE) 

Many subjects show significant autocorrelations at 

short lags, notably at a lag of one. For some subjects, such 

as s10 and s17, significant autocorrelations are found 

across a much wider span of lags. As the generalized linear 

model (and special cases such as analysis  of variance) build 
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on the assumption of the independence of observations, 

corrective measures are required. In what follows, we 

illustrate how this temporal correlation can be removed by 

taking as example results from subject s10. A regression 

model is fitted to this subject's responses, with a log-

transform for the naming latencies, using a quadratic (non-

orthogonal) polynomial for word frequency, and with two 

covariates to bring temporal dependencies under control: 

TRIAL and the PRECEDING RT. The coefficients of the fitted 

model are listed in Table 1. 

 
> exam.ols = ols(RT ~ pol(Frequency, 2) + 

rcs(Trial) + PrecedingRT, 

+ data = exam) 

 

The first temporal control, Trial, represents rank-

order of a trial in its experimental sequence. Since trials are 

usually presented to each participant in different, 

(pseudo)randomized sequence, rank-ordering is unique 

between participants. In general, this control covariate 

models the large-scale flow of the experiment, representing 

learning (latencies becoming shorter) or fatigue (latencies  

becoming longer as the experiment proceeds). For the 

present subject (s10), responses were executed faster as the 

experiment proceeded, suggesting adaptation to the task 

(upper left panel of Figure 9). It is worth noting that the 

trial number in an experimental session may enter into an 

interaction with one or more critical predictors, as in the 

eye-tracking study of Bertram, Kuperman, and Baayen 

(2010). Figure 9 indicates that the present learning effect is 

greater in magnitude than the effect of frequency. 

 

The second temporal control covariate is the 

latency at the preceding trial (PRECEDING RT). For the 

initial trial, this latency is imputed from the other latencies 

in the time series (often as mean reaction time). The current 

latency and the preceding latency are highly correlated 

. The effect size of 

PRECEDING RT is substantial, and greater than the effect 

size of FREQUENCY (see Figure 9). Studies in which this 

predictor has been found to be significant range from 

speech production (picture naming, Tabak, Schreuder, & 

Baayen, 2010b), and speech comprehension (auditory lexi- 

cal decision, Baayen, Wurm, & Aycock, 2007; Balling & 

Baayen, 2008), to reading (visual lexical decision, De 

Vaan, Schreuder, & Baayen, 2007; Kuperman, Schreuder, 

Bertram, & Baayen, 2009; and progressive demasking, 

Lemhoefer et al., 2008). 

 

A model with just FREQUENCY as predictor has an 

R-squared of 0.027. By adding Trial as predictor, the R-

squared improves to 0.288. Including both TRIAL and 

PRECEDING RT results in an R-squared of 0.334. The lower 

panels of Figure 9 illustrate that including Trial as predictor 

removes most of the autocorrelation at later lags, but a 

significant autocorrelation persists at lag 1. By including 

Preceding RT as predictor, this autocorrelation is also 

removed. 

 

Across many experiments, we have found that 

including variables such as TRIAL and PRECEEDING RT in 

the model not only avoids violating the assumptions of 

linear modeling, but also helps improving the fit and 

clarifying the role of the predictors of interest (see, e.g., De 

Vaan et al., 2007). 

 
Table 1: Coefficients of an ordinary least-squares 

regression model fitted to the naming latencies of subject 

19s. 

 
 Value Std. Error t p  

Intercept 5.6850 0.4730 12.0179 0.0000 
Frequency 

(linear) 
-0.1657 0.0610 -2.7179 0.0070 

Frequency 

(quadratic) 
0.0088 0.0036 2.4282 0.0159 

Trial -0.0013 0.0002 -6.3415 0.0000 
Preceding RT 0.2570 0.0601 4.2777 0.0000 

 

An example of mixed-effects modeling 

 

Mixed-effects models offer the researcher the 

possibility of analyzing data with more than one random-

effect factor - a factor with levels sampled from some large 

population. In psycholinguistics, typical random-effect 

factors are subjects (usually sampled from the 

undergraduate students that happen to be enrolled at one's 

university) and items (e.g., syllables, words, sentences). 

Before the advent of mixed-models, data with repeated 

measurements for both subjects and items had to be 

analyzed by aggregating over items to obtain subject 

means, aggregating over subjects to obtain item means, or 

both (see,e.g., Clark, 1973; Forster & Dickinson, 1976; 

Raaijmakers, Schrijnemakers, & Gremmen, 1999, and 

references cited there). mixed-models obviate the necessity 

of prior averaging, and thereby offer the researcher the far 

more ambitious goal to model the individual response of a 

given subject to a given item. Importantly, mixed-models 

offer the possibility of bringing sequential dependencies, as 

described in the preceding section, into the model 

specification. They also may offer a small increase in 

power, and better protection against Type II errors. In what 

follows, we discuss, a large dataset illustrating some of the 

novel possibilities offered by the mixed-modeling 

framework building on prior introductions (here we build 

on prior introductions given by Pinheiro & Bates, 2000; 

Baayen et al., 2008; Jaeger, 2008; Quené & Bergh, 2008, 

etc.). Analyses are run with the lme4 package for R (Bates 

& Maechler, 2009). 

 

Figure 9. Partial effects of FREQUENCY, Trial, and 

PRECEDING RT (upper panels), and auto-correlation 
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functions for the residuals of three regression models fitted 

to the data of subject 19s (left: FREQUENCY as only 

predictor, center: FREQUENCY and TRIAL, right: 

FREQUENCY, TRIAL and PRECEDING RT. 

 

 
 

The data 

 

The dataset comprises 275996 self-paced reading latencies 

elicited through a web interface from 326 subjects reading 

2315 words distributed over 87 poems in the anthology of 

Breukers (2006). Subjects included students in an 

introductory methods class, as well as their friends and 

relatives. For fixed-effect factors, we made use of contrast 

coding, as this allows for a more straightforward 

interpretation of interactions involving factors and 

covariates. We made use of five kinds of predictors. 

 

1. Properties of the words: word length 

(WORDLENGTH), the (log-transformed) long-term 

frequency of the word, estimated from the CELEX 

lexical database (WORDFORM-FREQUENCY), the word's 

number of meanings, estimated from the number of 

synsets in the Dutch WordNet in which it is listed 

(SYNSETCOUNT ), the word's morphological family size 

- the number of words in which it forms a constituent 

(FAMILYSIZE), the word's inflectional entropy, 

specifying an information load of its inflectional 

paradigm (INFLECTIONALENTROPY), the word's count 

of morphemes (NMORPHEMES), and whether the word 

is a function word (ISFUNCTIONWORD, with reference 

level 'FALSE'). (For the theoretical framework guiding 

the selection of these predictors, see Baayen, 2007 and 

Milin, Kuperman, Kostic, & Baayen, 2009.) Further 

predictors are the frequency of the word in the poem up 

to the point of reading (LOCALFREQUENCY), the 

frequency of the rhyme in the poem up to  the point of 

reading (LOCALRHYMEFREQ), and the frequency of the 

word's onset up to the point of reading 

(LOCALONSETFREQ). Rhymes and onsets were 

calculated for the last and first syllables of the word, 

respectively. Onsets were defined as all consonants 

preceding the vowel of the syllable, and rhymes were 

defined as the vowel and all tautosyllabic following 

consonants. Note that these last three predictors are not 

available to analyses that crucially require aggregation 

over subjects and/or items.  

 

Unsurprisingly, LOCALRHYMEFREQ and 

LOCALONSETFREQ enter into strong correlations  with 

LOCALFREQUENCY ( . We therefore 

decorrelated LOCALRHYMEFREQ from 

LOCALFREQUENCY by regressing LOCALRHYMEFREQ 

on LOCALFREQUENCY and taking the residuals as new, 

orthogonalized, predictor. The same procedure was 

followed for LOCALONSETFREQ. The two residualized 

variables correlated well with the original measures 

for LOCALRHYMEFREQ and for 

LOCALONSETFREQ). Thus, decorrelation was justified 

to control for the collinearity, but, moreover, it did not 

change the nature of the original predictors. 

 

2. Properties of the lines of verse: the length of the 

sentence (SENTENCELENGTH), the position of the word 

in the sentence (POSITION, a fixed-effect factor with 

levels 'Initial', 'Mid', 'Final', with 'Initial' as reference 

level), whether the word was followed by a punctiation 

mark (PUNCTUATIONMARK, reference level 'FALSE'), 

and the number of words the reader is into the line 

(NUMBEROFWORDSINTOLINE). 

 

3. Properties of the subject: AGE (ranging from 13 to 

63, median 23), SEX (187 women, 142 men), 

HANDEDNESS (39 left handed, 290 right handed), and 

two variables elicited during a questionairre at the end 

of the experiment. This questionaire asked subjects  to 

indicate (through a four-way multiple choice) how 

many poems they estimated reading on a yearly basis, 

this estimate was log-transformed 

(POEMSREADYEARLY). The time required to reach this 

choice was also recorded, and log-transformed 

(CHOICERT). 

 

4. Longitudinal predictors: Trial, the number of words 

read at the point of reading (ranging from 1 to 1270), 

and Preceding RT, the self-paced reading latency at the 

preceding word. These two predictors are not available 

for analyses based on aggregated data as well. 

 

5. Three random-effect factors: Subject, Word, and 

Poem. Note that we can include more than two 

random-effect factors if there are multiple kinds of 
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repeated measures in the dat; no separate 

 tests need to be carried out.  

 

A model 

 

A stepwise variable selection procedure resulted in 

a model that is specified as follows, using the lmer 

function from lme4 package in R: 

 
poems.lmer = lmer( 

RT ~ 

WordLength + I(WordLength^2) + 

WordFormFrequency + I(WordFormFrequency^2)+ 

SynsetCount + FamilySize + 

InflectionalEntropy + 

IsFunctionWord + Nmorphemes + 

LocalFreq + LocalRhymeFreqResid + 

LocalOnsetFreqResid + 

SentenceLength + NumberOfWordsIntoLine + 

Position + PunctuationMark + 

Sex + Age + PoemsReadYearly + ChoiceRT + 

Trial + PrecedingRT + 

Position * (FamilySize + 

InflectionalEntropy) + 

SentenceLength * SynsetCount + 

Sex * (PunctuationMark + Nmorphemes + 

Position + WordFormFrequency) + 

(1 | Poem) + 

(1 + Nmorphemes + WordFormFrequency | 

Subject) + 

(1 + ChoiceRT + Age | Word), 

data= poems 

) 

 

Main effects are listed separated by a plus sign, 

interactions are specified by an as terisk. Here, we used a 

quadratic polynomial for, e.g., the negative decelerating 

trend of WORDFORMFREQUENCY. We specified the terms 

for the linear component and the quadratic component 

(indicated by ^2) separately in order to be able to restrict an 

interaction with SEX to the linear component. 

 

Random-effect factors are specified between parentheses. 

The notation (1 | Poem)indicates that the model includes 

random intercepts for Poem. This allows for the possibility 

that some poems might be more dificult or more interesting 

to read, leadingto longer reaction times across all words in 

the poem and across all subjects. The notation (1 + 

Nmorphemes + WordFormFrequency | Subject) 

specifies a more interesting random-effects structure for the 

subjects. Not only do we have random intercepts for the 

subjects (indicated by the 1), we also have random slopes 

for the number of morphemes in the word (NMORPHEMES) 

as well as for WORDFORMFREQUENCY. Inclusion of these 

random slopes relaxes the assumption that the effect of 

NMORPHEMES or WORDFORMFREQUENCY would be 

identical across subjects. The same notation for the random-

effect factor WORD indicates that random intercepts and 

random slopes for the subject's AGE and CHOICERT were 

required. 

 

It is important to note here that random slopes for 

subjects pertain to properties of the words, and that the 

random slopes for word pertain to properties of the 

subjects. These notational conventions provide the analyst 

with flexible tools for tracing how the effects of properties 

of items vary across subjects, and how characteristics of 

subjects affect the processing of items. 

 

Strictly speaking, the terminology of fixed versus 

random effects pertains to factors. However, in mixed-

modeling terminology, covariates are often reported as part 

of the fixed-effects structure of the model. We shall follow 

this convention in the present paper. In what follows, we 

first discuss the coefficients for the fixed effects (fixed-

effect factors and covariates), and then zoom into the 

random-effects structure of the model. 

 

Fixed-effects structure 

 

Table 2 lists the estimates for the intercept, the 

slopes, the contrast coefficients and their interactions in the 

fitted model. For the present large dataset, an absolute t-

value exceeding 2 is an excellent indicator of significance 

(see Baayen et al., 2008). A full discussion of this model is 

beyond the scope of the present paper. Here, we call 

attention to a few aspects that are of methodological 

interest. 

 

First, it is noteworthy that the two coefficients with 

the largest absolute t-values are two control predictors that 

handle temporal dependencies: TRIAL and PRECEDINGRT. 

Their presence in the model not only helps satisfy to a 

better extent the independence assumption of the linear 

model, but also contribute to a more precise model with a 

smaller residual error. Simply stated, these predictors allow 

a more precise estimation of the contributions of the other, 

theoretically more interesting, predictors. 

 

Second, our model disentangles the contributions of long-

term frequency (as gauged by frequency of occurrence in a 

corpus) from the contribution of the frequency with which  

the word has been used in the poem up to the point of 

reading. Long-term frequency (WORDFORMFREQUENCY) 

emerged with a negative decelerating function, with 

diminishing facilitation for increasing frequencies. Short-

term frequency (LOCALFREQ) made a small but highly 

significant independent contribution. We find it remarkable 

that this short-term (i.e., episodic) frequency effect is 

detectable in spite of massive experimental noise. 
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Table 2: Estimated coefficients, standard errors, and t-values for the mixed-model fitted to the self-paced reading latencies 

elicited for Dutch poems. 

 

 Estimate Std. Error t value 

Intercept 3.7877 0.0244 155.2758 

WordLength -0.0024 0.0031 -0.7789 

I(WordLength^2) 0.0010 0.0002 4.7543 

WordFormFrequency -0.0240 0.0058 -4.0971 

I(WordFormFrequency^2) 0.0051 0.0018 2.8385 

SynsetCount 0.0240 0.0045 5.3294 

FamilySize -0.0042 0.0013 -3.1877 

InflectionalEntropy -0.0122 0.0027 -4.4556 

IsFunctionWordTRUE 0.0055 0.0061 0.8920 

Nmorphemes 0.0005 0.0013 0.3923 

LocalFreq -0.0048 0.0004 -11.7279 

LocalRhymeFreqResid 0.0029 0.0008 3.7343 

LocalOnsetFreqResid -0.0062 0.0007 -8.5043 

SentenceLength -0.0016 0.0005 -2.8406 

NumberOfWordsIntoLine 0.0029 0.0004 7.6266 

Position = Final 0.0608 0.0061 9.8940 

Position = Mid -0.0621 0.0038 -16.2994 

PunctuationMark = TRUE 0.1496 0.0031  48.8943 

Sex = Male  0.0516  0.0149 3.4612 

PoemsReadYearly -0.0111 0.0060 -1.8456 

ChoiceRT 0.0543 0.0087 6.2233 

Trial -0.0002 0.0000 -73.1891 

PrecedingRT 0.3957 0.0017 234.5453 

FamilySize : Position = Final 0.0028 0.0013 2.2295 

FamilySize : Position = Mid 0.0035 0.0008 4.4843 

InectionalEntropy : Position = Final 0.0140 0.0027 5.1897 

InectionalEntropy : Position = Mid 0.0077 0.0021 3.7411 

SynsetCount : SentenceLength -0.0023 0.0004 -5.7932 

PunctuationMark = TRUE : Sex = Male -0.0291 0.0040 -7.3039 

Nmorphemes : Sex = Male -0.0024 0.0013 -1.9004 

Position = Final : Sex = Male -0.0144 0.0044 -3.2749 

Position = Mid : Sex = Male -0.0121 0.0031 -3.8598 

WordFormFrequency : Sex = Male 0.0110 0.0045 2.4410 

 

 

Independently of short-term frequency, the 

frequency of the rhyme (LOCALRHYMEFREQRESID) and the 

frequency of the onset (LOCALONSETFREQRESID) reached 

significance, with the local frequency of the rhyme 

emerging as inhibitory, and the local frequency of the onset 

as facilitatory. Thus two classic poetic devices, end-rhyme 

and alliteration, emerge with opposite sign. The facilitation 

for alliteration may arise due to cohort-like preactivation of 

words sharing word onset, the inhibition for rhyming may 

reflect an inhibitory neighborhood density effect, or a 

higher cognitive effect such as attention to rhyme when 

reading poetry. Crucially, the present experiment shows 

that in the mixed-modeling framework effects of lexical 

similarity can be studied not only in the artificial context of 

controlled factorial experiments, but also in the natural 

context of the reading of poetry. 
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Third, the present model provides some evidence 

for sexual differentiation in lexical processing. Ullman and 

colleagues (Ullman et al., 2002; Ullman, 2007) have argued 

that females have an advantage in declarative memory, 

while males might have an advantage in procedural 

memory. With respect to the superior verbal memory of 

females (see also Kimura, 2000), note that the negative 

decelerating effect of long-term frequency 

(WORDFORMFREQUENCY) is more facilitatory for females 

than for males: for males, the linear slope of 

WORDFORMFREQUENCY equals 

 while for females it is . In other words, 

the facilitation from word frequency is almost twice as 

large for females compared to males. 

 

There is also some support for an interaction of the 

morphological complexity (NMORPHEMES) by SEX. While 

for females, NMORPHEMES has zero slope 

, males show slightly shorter reading times as the 

number of morphemes increases 

. 

This can be construed as  evidence for a greater 

dependence on procedural memory for males. The 

evidence, however, is weaker than the evidence for the 

greater involvement of declarative memory for females. We 

will return to these interactions in more detail below. 

 

Random-effects structure 

 

The random-effects structure of our model is summarized 

in Table 3. There are three random-effect factors, labeled as 

`Groups': WORD, SUBJECT , and POEM. For each, the table 

lists the standard deviation for the adjustments to the 

intercepts. ForWORD and SUBJECT , standard deviations are 

also listed for the adjustments to two covariates: CHOICERT 

and AGE to WORD, and NMORPHEMES and 

WORDFORMFREQUENCY to SUBJECT . (For technical 

reasons, these covariates were centered, see (Pinheiro & 

Bates, 2000).) For each of these two pairs of covariates, 

correlation parameters have been estimated, two pertaining 

to correlations of random slopes with random intercepts, 

and one pertaining to correlations  between random slopes. 

 

 

Table 3: Summary of the random-effects structure in the model fitted to the self-paced reading latencies (number of 

observations: 275996, groups: Word, 2315; Subject, 326; Poem, 87). 

 

Groups Name 
Standard 

Deviation 

Correlations 

with Intercept 

Correlations 

between Slopes 

Word Intercept 

CHOICERT 

AGE 

0.063 

0.012 

0.001 

 

0.840 

-0.905 

 

 

-0.779 

Subject Intercept 

NMORPHEMES 

WORDFORMFREQUENCY 

0.130 

0.005 

0.039 

 

0.379 

-0.637 

 

 

-0.212 

Poem  0.024   

Residual  0.287   

 

 

In what follows, we first assess whether the large 

number of parameters (7 standard deviations, excluding in 

this count the residual error, and 6 correlations) is 

justifiable in terms of a significant contribution to the 

goodness of fit of the model. Then, we discuss  how this 

random-effects structure can be interpreted. Finally, some 

conclusions will be given with illustrating the consequences 

of modeling random effects for the evaluation of the 

significance of the fixed-effects coefficients. 

 

Evaluation of significance. A sequence of nested 

models was built, with increased complexity of the random-

effects structure that required the investment of more 

parameters. For each successive pair of models, the results 

of a likelihood ratio test were applied, evaluating whether 

the additional parameters provide a better fit of the model 

to the data. 

 

The specifications for the lmer function of the 

random effects for these models are as follows: 

 
random 
intercepts only 

(1|Word) + (1|Subject) + (1|Poem) 

random 

intercepts and 
slopes 

(1|Word) + (0+Age|Word) + 

(0+ChoiceRT|Word) + 

+ (1|Subject) + 

(0+Nmorphemes|Subject) + 

+ (0+WordFormFreq|Subject) + 

(1|Poem) 

by-word 

correlations 
added 

(1+Age+ChoiceRT|Word) + (1|Subject) 

+ 

+ (0+Nmorphemes|Subject) + 

+ (0+WordFormFreq|Subject) + 
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(1|Poem) 

by-subject 
correlations 
added 

(1+Age+ChoiceRT|Word) + 

(1+Nmorphemes+WordFormFreq|Subject) 

+ (1|Poem) 

 

The first model has random intercepts only, the 

second has both random intercepts  and random slopes, but 

no correlation parameters. The third model adds in the by-

word correlation parameters. The fourth model is our final 

model, with the full random-effects structure in place. In 

particular, the notation (1+WordFormFreq|Subject) 

instructs the algorithm to estimate a correlation parameter 

for the by-subject random intercepts and the by-subject 

random slopes forWORDFORMFREQUENCY. Conversely, the 

notation (1|Subject)+ (0+WordFormFreq|Subject) 

specifies that the by-subject random intercepts should be 

estimated as independent of the by-subject random slopes  

for WORDFORMFREQUENCY, i.e., without investing a 

parameter for their correlation. 

Table 4 summarizes the results of the likelihood 

ratio tests for the sequence of nested models (including also 

log-likelihood, aic and bic values). The test statistic follows 

a chi-squared distribution, with the difference in the number 

of parameters between the more specific and the more 

general model as the degrees of freedom. The chi-squared 

test statistic is twice the ratio of the two log-likelihoods. As 

we invest more parameters in the random-effects structure 

(see the column labeled `df', which lists the total number of 

parameters, including the 34 fixed-effects coefficients), 

goodness of fit improves, as witnessed by decreas ing values 

of AIC and BIC, and increasing values of the log 

likelihood. For each pairwise comparison, the increase in 

goodness of fit is highly significant. Other random slopes 

were also considered, but were not supported by likelihood 

ratio tests. 

 

 

Table 4: Likelihood ratio tests comparing models with increasingly complex random-effects structure: a model with random 

intercepts only, a model with by-subject and by-word random intercepts and slopes, but no correlation parameters, a model 

adding in the by-word correlation parameters, and the full model with also by-subject correlation parameters. (df: the 

number of parameters in the model, including the coefficients of the fixed-effect part of the model.)  

 

 df AIC BIC log-likelihood   p 

random intercepts only 38 104893 105293 -52408    

random intercepts and slopes  42 101103 101545 -50509 3797.9 4  

by-word correlations added 45 101029 101503 -50470 79.4 3  

by-subject correlations added 48 100880 102386 -50392 155.2 3  

 

 

Interpretation of the random effects structure. 

Given that the present complex random-effects structure is 

justified, the question arises how to interpret the 

parameters. Scatterplot matrices, as shown in Figure 10, 

often prove to be helpful guides. The left matrix visualizes 

the random effects structure for words, the right matrix that 

for subjects, where in the left matrix each dot represents a 

word, and in the right matrix a dot represents a subject. For 

each pair of covariates, the blups (the best linear unbiased 

predictors) for the words (left) and subjects (right) are 

shown. The blups can be understood as the adjustments 

required to the population estimates of intercept and slopes 

to make the model precise for a given word or subject. 

Correlational structure is visible in all panels, as expected 

given the 6 correlation parameters in the model 

specification. 

 

First consider the left matrix in Figure 10. It shows much 

tighter correlations, which arise because in this experiment 

words were partially nested under poem and subject. With 

limited information on the variability across subjects and in 

respect to words' processing difficulty, estimated 

correlations are tight. In the first row of the left panel, 

differences in the intercept (on the vertical axis) represent 

differences in the baseline difficulty of words. Easy words 

(with short self-paced reading latencies) have downward 

adjustments to the intercept, difficult words (with long 

latencies) have upward adjustments. These adjustments for 

the intercept correlate positively with the adjustments for 

the slope of the CHOICERT, the time required for a subject 

to complete the final multiple choice question about the 

number of poems read on a yearly basis. The estimated 

population coefficient for this predictor is   (c.f., 

Table 2): Careful, slow respondents are also slow and 

careful readers. Across words, the adjustments to this 

population slope for CHOICE RT give rise to word-specific 

slopes ranging from  to . The positive 

correlation of the by-word intercepts and these by-word 

slopes indicates that for difficult words (large positive 

adjustments to the intercept), the difference between the 

slow and fast responders to the multiple choice question is 

more pronounced (as reflected by upward adjustments 

resulting in even steeper positive slopes). Conversely, for 

words with the larger downward adjustments to the slope of 

CHOICERT, the easy words, the difference between the slow 

(presumably careful and precise) and fast (more superficial) 

responders is attenuated. 
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Figure 10. Visualization of the correlation structure of the random intercepts and slopes for WORD (left) and SUBJECT 

(right) by means of scatterplot matrices. 
 

 
 

Next, from the fixed-effects part of the model, we 

know that older subjects are characterized by longer 

reaction times . The effect of AGE is not 

constant across words, however. For some words (with 

maximal downward adjustment for AGE), the effect of AGE 

is actually cancelled out, while there are also words (with 

positive adjustments) for which the effect of AGE is felt 

even more strongly. The negative correlation for the by-

word adjustments to the slope for AGE and the by-word 

adjustments to the intercept indicates  that it is for the more 

difficult words that the effect of Age disappears, and that it 

is for the easier words that the effect of Age manifests itself 

most strongly. 

 

The negative correlation for AGE and CHOICE RT 

indicates that the words for which greater AGE leads to the 

longest responses are also the words for which elongated 

choice behavior has the smallest processing cost. The three 

correlations considered jointly indicate that the difficult 

words (large positive adjustments to the intercept) are the 

words where careful choice behavior is involved, but not so 

much AGE, whereas the easy words (downward adjusted 

intercepts) are those where differences in age are most 

clearly visible, but not choice behavior. 

 

The scatterplot matrix in the right panel of Figure 

10 visualizes the less tight correlational structure for the by-

subject adjustments to intercept and slopes. The 

adjustments to the intercept position subjects with respect 

to the average response time. Subjects with large positive 

blups for the intercept are slow subjects, those with large 

negative blups are fast responders. 

 

The population slope for the count of morphemes 

in the word (NMORPHEMES) is  for females and  

for males. By-subject adjustments range from  to 

+ , indicating substantial variability exceeding the 

group difference. Subjects with a more negative slope for 

NMORPHEMES tend to be faster subjects, those with a 

positive slope tend to be the slower subjects. 

 

The linear coefficient of WORDFORMFREQUENCY 

estimated for the population is   for females and 

 for males. For different female subjects, addition of 

the adjustments results in slopes ranging from  to 

, for males, this range is shifted upwards by . 

For most subjects, we have facilitation, but for a few 

subjects there is no effect or perhaps even an \anti-

frequency" effect. The negative correlation for the by-

subject adjustments to the intercept and to the slope of 

frequency indicates that faster subjects, with downward 

adjustments for the intercept, are characterized by upward 

adjustment for WORDFORMFREQUENCY slopes. Hence, 

these fast subjects have reduced facilitation or even 

inhibition from WordFormFrequency. Conversely, slower 

subjects emerge with stronger facilitation. 

 

Interestingly, the correlation of the adjustments for 

WORDFORMFREQUENCY and NMORPHEMES is negative, 

indicating that subjects who receive less facilitation from 

frequency obtain more facilitation from morphological 

complexity and vice versa. 

 

Consequences for the fixed-effects coefficients. Careful 

modeling of the correlational structure of the random 

effects is important not only for tracing cognitive trade-offs 

such as observed for storing (WORDFORMFREQUENCY) and 

parsing (NMORPHEMES), it is also crucial for the proper 

evaluation of interactions with fixed-effect factors 

partitioning subjects or items into subsets. Consider the 

interaction of SEX by WORDFORMFREQUENCY and SEX by 

NMORPHEMES. In the full model, the former interaction 

receives good support with , while the latter 

interaction fails to reach significance . 

However, in models having only random intercepts for 

subjects, t-values increase to  and  respectively. 
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These models are not conservative enough, however. They 

overvalue the interactions in the fixed-effects part of the 

model, while falling short with respect to their goodness of 

fit, which could have been improved substantially by 

allowing into the model individual differences between 

subjects with respect to WORDFORMFREQUENCY and 

NMORPHEMES. In other words, when testing for interactions 

involving a group variable such as SEX, the interaction 

should survive inclusion of random slopes, when such 

random slopes are justified by likelihood ratio tests. In the 

present example, the interaction of SEX by 

WORDFORMFREQUENCY survives inclusion of random 

slopes for WORDFORMFREQUENCY, but the interaction with 

NMORPHEMES does not receive significant support. 

 

Model Criticism 

 

To complete the analysis, we need to examine our 

model critically with respect to potential distortions due to 

outliers. Before modeling, the data were screened for 

artificial responses (such as those generated by subjects 

holding the spacebar down to skip poems  they did not like), 

but no outliers were removed. As the presence of outliers 

may cause stress in the model, we removed datapoints with 

absolute standardized residuals exceeding  standard 

deviations ( of the data). The trimmed model was 

characterized by residuals that approximated normality 

more closely, as expected. 

 

Model criticism can result in three different 

outcomes for a given coefficient. A coefficient that was 

significant may no longer be so after trimming. If we recall 

the difference between the outliers and the extreme values, 

in this case it is likely that a few extreme values  are 

responsible for the effect. Given that the vast majority of 

data points do not support the effect, we then conclude that 

there is no effect. Conversely, a coefficient that did not 

reach significance may be significant after model criticism. 

In that case, a small number of outliers was probably 

masking an effect that is actually supported by the majority 

of data points. In this case we conclude there is a significant 

effect. Data trimming may also not affect the significance 

of a predictor in case the influential values have little 

leverage with respect to that particular predictor. 

 

For the present data, model criticism did lead to a 

revision of the coefficients for the interactions of SEX by 

NMORPHEMES and SEX by WORDFORMFREQUENCY. For 

both, evidence for a significant interaction increased. The t-

value for the coefficient of the interaction of SEX by 

WORDFORMFREQUENCY increased from  to , and 

the coefficient for SEX by NMORPHEMES showed absolute 

increase from   to . We note that trimming 

does not automatically result in increased evidence for 

significance. For instance, the support for the predictor 

POEMSREADYEARLY decreased after trimming, as indicated 

by the t-value, with decreased absolute values from 

to . 

 

In the light of these considerations, we conclude 

that this data set provides evidence supporting the 

hypothesis of Ullman and colleagues that the superior 

declarative memory of women affords stronger facilitation 

from word frequency, whereas males show faster 

processing of morphologically complex words, possibly 

due to a greater dependence on procedural memory. 

Although these differences emerge as significant, over and 

above the individual differences that are also significant, 

they should be interpreted with caution, as the effect sizes 

are small. The facilitation from WORDFORMFREQUENCY, 

evaluated by comparing the effects for the minimum and 

maximum word frequencies, was 67 ms for females and 40 

ms for males; an advantage of 27 ms for females. The 

advantage in morphological processing for males is 16 ms 

(a 10 ms advantage for males compared to a 6 ms 

disadvantage for females). 

 

CONCLUDING REMARKS 

 

The approach to the statistical analysis of reaction 

time data that we have outlined is  very much a practical 

one, seeking to understand the structure of experimental 

data without imposing a-priori assumptions about the 

distribution of the dependent variable, the nature and source 

of the influential values, the mechanisms underlying 

temporal dependencies, or the functional shape of 

regressors. While anticipating that more specific well-

validated theory-driven assumptions will allow for 

improvements at all stages of analysis, we believe that 

many of the classical methodological concerns can be 

addressed more effectively and more parsimoniously in the 

mixed-modeling framework. Furthermore, what we hope to 

have shown is that mixed-modeling offers new and exciting 

analytical opportunities for understanding many of the 

different forces that simultaneously shape the reaction 

times, which inform theories of human cognition. 
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