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Abstract

Background: Power spectral analysis of the occipital
cortex is essential for characterizing brain activity during
attentional and relaxed states. Objectives: This study aims
to develop a predictive model capable of distinguishing
between eyes-closed (EC) and eyes-open (EO) states
using only two electrodes (O1 and O2), through analysis
of power spectral density (PSD) and an interhemispheric
asymmetry index. Method: EEG recordings from 33
seventh- and eighth-grade students were processed using
the Fast Fourier Transform (FFT) and analyzed with a
logistic regression model employing a Cauchit link
function. Results: The model yielded an AUC of 84.2%,
with satisfactory precision and sensitivity. While the
asymmetry index alone was not highly predictive, it
significantly improved performance when combined with
frequency-band features. Conclusions: This minimal EEG
setup demonstrates reliable performance in distinguishing
ocular states in non-clinical environments. The approach
suggests potential applications in educational and field
contexts, emphasizing the value of low-cost EEG solutions
in cognitive monitoring.
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Resumen

Antecedentes: el analisis espectral de potencia de la
corteza occipital es fundamental para caracterizar la
actividad cerebral en estados de atencion y relajacion.
Objetivos: este estudio tiene como proposito desarrollar
un modelo predictivo capaz de distinguir entre |os estados
de ojos cerrados (EC) y ojos abiertos (EO) utilizando solo
dos electrodos (O1 y O2), a partir del andlisis de la
densidad espectral de potencia (PSD) y un indice de
asimetriainterhemisférica. M éodo: se procesaron registros
de EEG de 33 estudiantes de séptimo y octavo grado
mediante la Transformada Répida de Fourier (FFT), y se
analizaron utilizando un modelo de regresion logistica con
funcién de enlace tipo Cauchit. Resultados: el modelo
alcanzé un AUC de 84.2%, con niveles satisfactorios de
precision y sensibilidad. Si bien el indice de asimetria por
si solo no resultd altamente predictivo, su incorporacion
junto con las bandas de frecuencia mejoré
significativamente el rendimiento. Conclusiones. esta
configuracion minima de EEG demuestra un desempefio
confiable para diferenciar estados oculares en entornos no
clinicos. El enfoque sugiere aplicaciones potenciales en
contextos educativos y de campo, destacando € valor de
soluciones EEG de bajo costo para el monitoreo cognitivo.

Palabras clave: andlisis espectral de potencia, EEG,
regresion logistica, indice de asimetria, FFT.
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Introduction

For a long time, human behavior was understood
based on classic behavioural psychology, a positivist
paradigm in which only visible and objective behaviour
isanalyzable. Currently, psychology makes use of tools
such as tests and behaviour patterns to establish
cognitive processes, intentions and thoughts (Babini et
al., 2020; Luck, 2014). These tools have made is
possible to establish certain corrdates of cognitive and/
or emotional processes with physiologica responses
(Moodley, 2016). Furthermore, these toolswereinitialy
created for medicd use, and then have expanded their
gpplicationsto variousfidds, including neuropsychol ogy,
ergonomics, engineering, etc. (Alagia, 2018; Bonet,
2017; Jahr, 2020; Trejo-Alcantara & Castafieda-Villa,
2017; Vida & Gatica, 2013).

Electroencepha ography (EEG), eectrocardiography
(ECG), functiond near-infrared spectroscopy (FNIRS),
and functional magnetic resonance imaging (fMRI)
are widely used tools to monitor brain activity (Barret
et a., 2020; Phillips et a., 2023). Among them, EEG
stands out due to its ability to measure voltage
fluctuations across cortical regionswith high temporal
resolution (Barret et al., 2020). A major advantage
of EEG isits non-invasive and painless nature, making
it more accessible than fNIRS or fMRI, and more
informative for cognitive processes than ECG
(Lekova & Chavdarov, 2021; Rhoades & Bell, 2018).
The cost-effectiveness and portability of modern EEG
systems further enhance their utility in both clinical
and non-clinical settings. While various EEG
configurations differ in channel count and sampling
rate, they all aim to capture precise neural signals.
In this study, we focus on detecting eyes-closed (EC)
and eyes-open (EO) states—an effect originally
described by Berger (1929) and later expanded by
Kirschfeld (2005). Our objective is to build a
predictive model capable of distinguishing between
these ocular states based on EEG-derived features.

This study employsaminima EEG setup, using

only two electrodes (O1 and O2), to distinguish
between eyes-open (EO) and eyes-closed (EC)
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states. In addition to conventional frequency-band
segmentation, we introduce the asymmetry index
(Al) between these electrodes to enhance
interhemispheric analysis and predictive performance.
The simplicity of the setup promotes accessibility and
cost-effectiveness, making it feasible for non-clinical
environments.

Band segmentation enables the capture of neural
activity across multiple frequency domains, increasing
sensitivity to state-related changes. The inclusion of
Al enriches the feature set, offering a complementary
dimension to traditional spectral measures. These
methods were implemented within the framework of
logistic regression using different link functions to
optimize classification accuracy.

Previous studies have used more complex
systems. For instance, Davis & Kozma (2018)
employed 256 electrodes to measure EO/EC
differences, reporting changes in theta, low-beta, and
high-beta activity across prefrontal and occipital
regions. Similarly, Singh et d. (2015) achieved perfect
classification (AUC = 1) using 100 single-channel
inputs and least-squares support vector machines
(LS-SVM). While these models are powerful, their
practical implementation is limited due to hardware
complexity and cost.

Advances in short-term spectral analysis—such as
those described by Algjo-Eleuterio (2022), Fingelkurts
& Fingelkurts (2010), Jiménez-Guarneros and Xu et
a. (2022)— further support our approach. Segmenting
the EEG into 2-second windows, as recommended
by Barlow (1985) and Inouye et al. (1991), enhances
stability and reduces measurement noise.

More recently, Zhang et al. (2024) demonstrated
that reliable distinctions between eyes-open and eyes-
closed states can also be achieved using portable
EEG devices with a reduced number of electrodes,
particularly focusing on alpha-band activity. Their
findings support the practical value of minimal EEG
configurationsin field and applied settings.
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This study proposes a predictive model to
differentiate between EC and EO states using only
two electrodes (O1 and O2), thus facilitating its
application in non-clinical settings.

Objective: To establish a logistic regression
model capable of predicting eye state (EC vs. EO)
based on frequency bands recorded from electrodes
01 and 02, and to assess the contribution of the
asymmetry index to this prediction.

Hypotheses: (1) Frequency bands from
electrodes O1 and O2 can discriminate between EC
and EO states. (2) The asymmetry index enhances
the predictive capacity of the model.

This approach contributes to the literature by
demonstrating that robust prediction is possible using
a minimal number of electrodes, supporting the
development of portable and cost-effective solutions
for real-time monitoring of cognitive states.

The paper is structured in the following manner.
In Section 2, we delve into the theoretical
background, providing a concise overview of the
satistical tools employed. Moving on to Section 3, we
outline the materials and methodology used in our
study. Section 4 focuses on the logistic regression
applied to address our specific problem, along with

the practical implications of the results obtained.
Lastly, Section 5 encapsulates the key conclusions
drawn from our research, along with suggestions for
future investigations.

Theoretical Background

Fast Fourier Transform

Using the Fast Fourier Transform (FFT) (for more
details Proakis & Manolakis, 2013), which allows us
to calculate the discrete Fourier Transform (DFT),
which are often used interchangeably (Cooley et d,
1969) and the DFT can be defined in the following way

N-1

_Zm'kn
X, E x,e N

n=0

Where k=0, ... N-1. x isadiscrete aperiodic
signal in time, X is a set of complex numbers (for
more details see Proakis & Manolakis, 2013). In this
way, a power spectral density (PSD) decomposition
can be obtained, this allows establishing the band of
frequencies that are of interest when analyzing the
EEG data. Different authors (Davis & Kozma, 2018;
Proakis & Manolakis, 2013) have defined the
frequency bands in different ranges, in this case, they
will be used as shown in Table 1.

Tablel
Frequency Bands Used in the Analysis
Band Freguencies
>2-4
4,0001-8
o 8.0001-12
Biow 12.0001-15
B\ricaie 15.0001—-22
Brigh 22,0001-38
v 38.0001-90
Residual <2

Note. Frequency ranges used for FFT band segmentation. Source. Own elaboration.
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On the other hand, severa authors (Hinrikus et
a, 2009; Kang et a, 2020) indicate the contribution
of the asymmetry index (Al) as a measure of
physiological phenomena. For this reason, the
following Als were aso carried out for the O1 and
02 electrodes, using the following transformation

gy — Hay

Ala, =
gy T Qg

Where o, | and o, denote the spectral power in
alpha band recorded at electrodes O1 and O2,
respectively. This same procedure was carried out
for the other frequency bands.

Logistic Regression Model

The logidtic regression considers that the response
variable (say Y), has a Bernoulli distribution such as

PY=1)==n andP(Y,=0=1-xn,fori=1..,n

Table?2

Where € (0,1). In our particular problem, Y, =
0 and Y, = 1 represent the eyes-closed (CE) and
eyes-open (OE) states, respectively, and m. denotes
the probability of eyes being open. For the case where
the population is heterogeneous, a set of p > 1
observed covariates, say X" = (1, X, ..., ), could
be included into the probabilities , as

g(Tci) = T.li = XITB = BO+ X11|31+"' + Xipo I = 1""' n

Where B = (B,, ..., Bp)T is a vector of unknown
regression coefficients, n, are the linear predictors
and g(¢): R—(0,1) is the link function. For g(e),
traditionally the cdf of standard models is used
(Hernéndez & Mazo, 2020; Lopez-Gonzdez & Ruiz-
Soler, 2011; Martinez & Morales, 2001; Pierce &
Schafer, 1986). We consider the four cases presented
in Table 2 (Koenker & Yoon, 2009). For our particular
problem xT are the DFT for the different bands
presented in Table 1 for O1, O2 and 1AO.

Link Functions Considered for Logistic Regression

Distribution in which is based

link o(u)

Logistic
Normd
Frechet

Cauchy

probit
cloglog

cauchit

log(w/(1 - u))
DH(u)
log(-log(1 - u))
tan(m (u - 1/2))

Note. ®(.) and tan denotes the cdf of the standard normal distribution and the tangent function,

respectively.

Performance Indexes

AIC and BIC

For comparison purposes, we consider the Akaike
information criterion (AIC; Akaike, 1974) and the
Bayesian information criterion (BIC; Schwarz, 1978).
Such criteria are defined as

AIC=-2xlog (L) +2x k and
BIC=-2xlog (L) + log(n) x k
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where L is the maximum value attached by the
likelihood function of the corresponding model, k is
the number of parameters and n, is the sample size.
The AIC and BIC are statistical measures used to
evauate the fit and complexity of different statistical
models. A lower value of AIC or BIC indicates a
better fit, with a given penalization for a model with
more parameters.
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ROC curve

The ROC (Receiver Operating Characteristic)
curve is an especially useful graphic representation
to establish the efficiency of predictive models with
binary variables, dlightly varying the cut-off point to
carry out the classification (Cerda & Cifuentes, 2012).

The ROC curve allows for establishing the
performance of some statistical models in terms of
their classification quality. To apply this method, a
threshold value must be set (between 0 and 1) that
indicates a point where the probability of equal or
higher events will be predicted as positive, and lessthan
this threshold, they will be predicted as negative. This
allows for establishing a contingency table for that
threshold. For the ROC curve, it is required to vary

the threshold at al points between 0 and 1 and thus
plot the contingency table corresponding to each point.
Thisalowsfor finding the cut-off point (or threshold)
closest to the perfect classification point (.1).

The most used indicator in the analysis of the ROC
curve is the area under the curve (AUC), which
alows us to interpret the probability that a classifier
will score a positive randomly chosen score higher
than a negative one.

To understand the ROC curve, it is necessary to
understand the contingency tables or confusion
matrix. In this case, we can use as an example the
Table 3.

Table3
Confusion Matrix Sructure
Real data Total
1 0
1 True positive Fase positive A
F
Moddl (TP) FP)
outcome False negative True negative e
(FN) (TN)
Tota A E

Note. A = Total classified as positive (1), E = Total classified as negative.

Table 3 shows the True Positive (TP) and the
True Negatives (TN) are values associated with
success within the contingency matrix in the sense
that they represent the correctly classified values. In
other words, the model predicts as OE, what is OE,
and likewise, classifies as CE those who are CE.

An important concept to consider that arises from
the above is the true positive ratio (TPR) or success
ratio also called «sengitivity», defined by

TP

TPR=————
TP + FN
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On the other hand, the other value that must be
used to establish the graph of a ROC curve is the
false positivesratio (FPR) which is given by

FP

FPR= —————
FP+ TN

This concept can be considered the complement
of specificity, so that

specificity = 1 - FPR

The TPR measures whether the diagnostic test
or the predictive model is capable of classifying the
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positives correctly among al the positives found in
the test. While the FPR indicates the number of
positive results isincorrect among all negative cases
available.

Method

Design

This study uses a pre-experimenta within-subject
design, in which participants are exposed to two
conditions (open eyes and closed eyes) without
random assignment or a control group. The objective
is to determine whether it is possible to predict eye
condition based on the EEG spectral data obtained
from occipital electrodes. The anaysis also follows
a predictive correlational approach, as logistic

regression models are used to establish the
relationship between frequency band activity and eye
state.

Participants

The participants were chosen by convenience
sampling. The only exclusion criterion was not having
a history of epilepsy or other declared clinical
disorders. Thereisasimilar proportion between men
and women, as well as between school grades.
Specifically, the sample consisted of 33 students: 17
men and 16 women. Among the men, 7 were from
7th grade and 10 from 8th grade, while among the
women, 10 were from 7th grade and 6 from 8th
grade. The detailed distribution of participants by
grade and gender can be observed in Table 4.

Table4
Distribution of Participants by Grade and Gender
Grade Totd
7th 8th
Men 7 10 17
Women 10 6 16
Total 17 16 3

Note. n = 33. Source. Own participant sample.

Instruments

For the recording, the Emotiv Epoc 14-channel
EEG modd (Emotiv, 2024) was used. This equipment
allows the measurement of the Ol and O2
electrodes, as indicated in Figure 1. The location of
the electrodes follows a standard and international
configuration, most commonly known as the «10-20»
method (Klem et a., 1999). In this case, the eye-
related effect is expected in the occipital area, which
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is why only the O1 and O2 electrodes were used to
simplify the model.

The equipment was configured to collect 128
measurements per second for each channel (128Hz).
Each measurement calculates a value that can be
decomposed as a base value of 4200mV, to which
differences in electrical potential are added or
subtracted.
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Figurel
EEG €lectrode position scheme

Note. Location of O1 and O2 electrodes according to the 10-20 international

system. Source. Own elaboration.

Procedure

The procedure followed for data collection

involved the following steps:

1

Consent and assent: The participants were
informed about the objectives and procedures of
the study. Written informed consent was obtained
from their tutors, and assent was obtained from
each participant, in compliance with ethical
standards.

Preparation and environment: The recording took
place in a room with minimal noise and neutra
lighting. Participants were seated comfortably in
front of a blank wall to reduce visual distractions.

Data collection — open eyes: Participants were
instructed to keep their eyes open and look steadily
at the blank wall for a period of 5 minutes while
the EEG data were recorded continuously.

Liberabit, 2025, 31(2), €1085 (julio - diciembre)

4. Data collection — closed eyes. Immediately after,
participants were instructed to close their eyesand
remain still for another 5 minutes while EEG
recording continued.

5. Data selection: To ensure data reliability, the
middle thirds of each recording period were
selected. This approach aimed to allow
environmental adaptation and to avoid potential
distortions or artifacts that can occur at the
beginning or end of the recording sessions. This
procedure was based on Jahr (2020).

6. Completion and farewell: At the end of the
recording, participants were thanked for their
collaboration and given the opportunity to ask any
questions before leaving the session.

A general representation of the procedure can be
observed in Figure 2.
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Data analysis

Data preprocessing included the application of a
minimum frequency filter of 0.4Hz and a high-
frequency filter of 90Hz. Segments of 10 seconds
(1280 measurements), without overlap, were
extracted. FFT was applied to each segment to
compute the power spectral density and extract
average amplitude values for each frequency band
(as per Table 1). These values were then used to
compute asymmetry indices (Equation 2), followed by
feature selection and logistic regression modeling.

Figure2
EEG Processing Pipeline

Electrode

EEG cop—r" |53 01¢

& | ﬁ

Model selection was based on AUC, AIC, and
BIC indicators. The final model was trained on a
random 70% of the data.

In total, we collected 933,557 measures,
corresponding to approximately 50% for each
condition studied (463,416 for CE and 470,141 for
OE). The analysis was performed using R software
(R Core Team, 2021), with the eegkit package
(Helwig, 2018).

Meassured potential for esch elecirode -,

Note. Diagram of the sequential steps from acquisition to prediction. Source. Own elaboration.

Results

The data extracted from the Emotiv software were
organized based on each frequency band per
electrode, along with the asymmetry index (Al) of
each band.

Table 5 summarizes the AUC, AIC, and BIC for
four link functions (logit, probit, cloglog, and cauchit).
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From the table, it can be observed that the cauchit
link function displaysthe lowest AIC and BIC values,
indicating a better fit for the data. Additionaly, the
cauchit link function also exhibits the highest AUC,
suggesting better predictive performance. Due to
these reasons, we will focus on utilizing the cauchit
link function for further analysis.
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Table5
Model Fit Indices by Link Function
logit probit cloglog cauchit
AUC 836 832 812 842
AIC 554.8 556.9 576.6 467
BIC 6480 6500 669.8 6388

Notes. AUC = Area Under Curve, AIC = Akaike Information Criterion, BIC = Bayesian. Information Criterion.

Thelogigtic regression analysis with a cauchit link However, the contributing predictors varied across
yielded significant estimates for each band, as well electrodes, in Table 6.
as the asymmetry index, across both electrodes.

Table6
Regression Coefficients by Frequency Band and Electrode
Electrode Band Estimate Pr(>2)
(Intercept) -7103 1334
o1 ) 14225 0112+
0 -.5666 6713
o - 4745 9104
Bow -8539 1770
B\ 23335 7658
Brign 12,0903 3306
v -51.0291 .0070**
o2 ) -.5654 3213
0 -15383 1247
o -4.9096 1565
Biow 132459 .0175*
Bricaie 84424 2106
Bhigh -104363 .339%
v 166073 2647
IAO ) 21005 .3638
0 9.1618 .0090**
o 27333 5812
Biow -8.33077 J455
B\t -12.6224 0251*
Bhigh 14838 4660
v -1.8823 .0802.

Notes. *p < .05, **p < .01. Non-significant values omitted.
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Importantly, the theta, low-beta, and high-beta
bands showed significant predictive power for O1,
while different bands were relevant for O2 and the
Al. Thesefindings partidly confirm the first hypothess,
indicating that frequency bands from O1 and O2 are
indeed useful in distinguishing EC and EO dates.

Figure3

The Al alone was not consistently significant
across all bands, but its combination with other
variables contributed positively to model performance.
This offers partial support for the second hypothesis,
which proposed that the asymmetry index would
enhance prediction.

Receiver Operating Characteristic (ROC) Curve

=
—

Sensitivity
06 08

0.4

0.2

0.0

Figure 3 shows the ROC curve for the model,
confirming its classification quality. The optimal cut-
off point (.653) balances sensitivity (.794) and
specificity (.778), asdetailed in Table 7.

Table 8 reports precision and error metrics for
both training and testing datasets. The average
accuracy in testing was 66.7%, with an F-measure
of .684, suggesting moderate generalizability. While
dightly lower than training accuracy, the consistency
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0.6

I | |
04 0.2 0.0

Specificity

Note. Represents model sensitivity and specificity across cut-off thresholds.

10

between training and test performance supports the
model’s stability.

This indicates that the model is performing
reasonably well in predicting the target variable. The
AUC vaue of 84.2% suggest that the model has good
discriminative power in distinguishing between positive
and negative instances. Finally, Table 9 shows the
confusion matrix used to assess prediction outcomes.
The model correctly identified 79.4% of EC and
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77.8% of EO cases, which aigns with the modd’s Overal, these evaluation metrics suggest that the
AUC and supports its utility in real-time EC/EO model is performing well in terms of both its ability
classification using only two electrodes. to identify positive instances and its ability to correctly

classify negative instances.

Table7
ROC Curve Performance Measures
Optimal cut-off point Sensitivity Specificity

Note. Includes sensitivity and specificity at optimal cut-off point.

Table8
Classification Metrics for Training and Testing Sets
Indicator Training Testing

Average accuracy .786 667
F-Measure .786 634
MAE 214 333
RMAE 462 578
Precision AA 627
Recdll 778 752

Notes. MAE = Mean Absolute Error, RMAE = Root Mean Absolute Error.

Table9
Prediction Outcomes by Real Sate
Redl state Real state
0 1 0 1
Prediction 0 77.8% 20.6% 75.2% 41.2%
1 22% 79.4% 24.8% 58.8%
Training Testing

Note. Percentages of correctly classified observations in training and testing sets.
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Discussion

The results of this study support the viability of
using only two occipital electrodes (O1 and O2) to
predict eyes-closed (EC) and eyes-open (EO) states
through power spectral analysis and logistic
regression. The achieved AUC of 84.2% suggests
that the model has a strong discriminative capacity,
reinforcing the relevance of low-cost, non-invasive
EEG setups in cognitive state monitoring.

Regarding the hypotheses, the first is supported
by the results: frequency bands from O1 and O2
electrodes provided gtatistically significant predictors
for distinguishing EC and EO states. Specifically,
different frequency bands contributed to the model
depending on the electrode, consistent with previous
findings on localized occipita activity.

The second hypothesis was partially supported:
while the asymmetry index (Al) aone did not reach
high predictive accuracy (AUC < 65%), it enhanced
model performance when used aongside frequency
bands, indicating its utility as a complementary
feature.

Compared to previous works using large arrays
of electrodes (e.g., Davis & Kozma, 2018; Ma &
Gao, 2020; Singh et al., 2015), the current model
demonstrates that similar levels of performance can
be approached with adrastically smplified setup. This
has significant practical implications, especially for
real-time monitoring in field settings, educational
environments, or |ow-resource contexts.

Severa limitations must be acknowledged. The
sample size was relatively small (n = 33) and limited
to a narrow age range (middle school students),
which may congrain the generalizability of the results.
Additionally, the absence of electrodes in frontal or
parietal regions might overlook other relevant neural
signatures. Future studies should explore the
generalization of this model across broader
populations and test the integration of additional
physiological or behavioral variables.
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Concluson

In line with this, recent research by Metzen et 4.
(2022) examined the short-term reliability of apha-
band asymmetry across frontal and parietal regions
using different EEG systems. Their findings emphasize
the importance of regional differences in alpha
asymmetry and the methodologica challenges of
achieving consistent measurements across devices.
This supports the relevance of exploring regional
contributions beyond the occipital cortex in future work.

In conclusion, this study demonstratesthat asimple
EEG configuration combined with appropriate spectra
and statistical processing can effectively distinguish
basi c attentional states. These findings contribute to the
development of accessible EEG-based monitoring tools
and support the continued refinement of predictive
models using minimal neural data.

Future research should aim to validate these
findings in more diverse samples, compare the
performance across different EEG headsets, and
explore applications beyond ocular states, such as
emotional or cognitive workload detection.
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