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Abstract
This research addresses the limitations of traditional network models in capturing the complexity 
and dynamics of real-world social networks. Motivated by the need for a more comprehensive and 
flexible framework, the study introduces the Hybrid Modern Network Model (HMNM). The 
HMNM integrates foundational models like the Stochastic Block Model (SBM) and Preferential 
Attachment with advanced machine learning techniques, including Graph Neural Networks 
(GNNs), Reinforcement Learning (RL), Hierarchical Random Graphs (HRGs), Generative 
Adversarial Networks (GANs), and Variational Autoencoders (VAEs). The methods employed 
involve constructing initial network structures using SBM, simulating network growth through 
preferential Attachment, learning node embeddings with GNNs, dynamically optimizing network 
properties using RL, capturing hierarchical community structures with HRGs, controlling degree 
distributions using GANs, and uncovering latent patterns with VAEs. The empirical illustration of 
HMNM highlights its effectiveness in providing a more realistic, scalable, and comprehensive 
analysis of social networks compared to traditional models. Integrating diverse methodologies 
allows for accurately modeling of network structures, dynamic processes, and latent patterns. In 
conclusion, the HMNM offers significant advancements in network modeling, providing a robust 
and flexible framework for analyzing social networks. This model overcomes the limitations of 
traditional models and delivers deeper insights into the complexities and dynamics of social 
structures. Future research will optimize the HMNM and explore its applications across various 
domains. The R programming code used for the network simulations and visualizations is 
conceptual and demonstrates the HMNM framework. The results and metrics are illustrative 
placeholders, emphasizing the methodology rather than empirical validation.
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Non-Technical Summary

Background
Network models are essential tools in social science research, allowing for the detailed anal­
ysis of complex relational data. These models enable exploring social networks, representing 
interactions and relationships among individuals, organizations, or other entities. By using 
network models, researchers can uncover patterns, predict behaviors, and understand the 
dynamics of social interactions. Traditional models like the Stochastic Block Model (SBM), 
Erdős-Rényi (ER) model, and Barabási–Albert (BA) model have significantly impacted the 
field, but they have limitations in capturing the evolving nature of real-world networks.

Why was this study done?
The study addressed the shortcomings of traditional network models, which often lack the 
flexibility and scope to capture the intricacies of network evolution, community hierarchies, 
and the impact of individual node attributes. By integrating modern machine learning 
techniques with traditional network models, the study aims to develop a Hybrid Modern 
Network Model (HMNM) that provides a comprehensive framework for analyzing social 
networks.

What did the researchers do and find?
Researchers integrated elements from traditional models like SBM and BA with advanced 
techniques such as Graph Neural Networks (GNNs), Reinforcement Learning (RL), Gener­
ative Adversarial Networks (GANs), and Variational Autoencoders (VAEs) to create the 
HMNM. This model was designed to model network structures accurately, account for 
dynamic processes, optimize network properties, and uncover latent patterns. The HMNM 
demonstrated its effectiveness in providing a more realistic, scalable, and comprehensive 
analysis of social networks compared to traditional models.

What do these findings mean?
The findings suggest that the HMNM can significantly enhance the analysis and under­
standing of social networks. By integrating diverse methodologies, the HMNM offers a 
powerful, flexible, and comprehensive framework that addresses the limitations of tradition­
al models. This advancement in network modeling methodologies holds great potential for 
advancing social science research and enhancing our understanding of social structures 
and dynamics. Including the R programming code further facilitates the application and 
adaptation of the HMNM in various research contexts.
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Network models have become fundamental tools in social science research, enabling 
the detailed analysis of complex relational data (Bellingeri et al., 2023). These models 
help explore social networks, representing interactions and relationships among individ­
uals, organizations, or other entities. By employing network models, researchers can 
uncover patterns, predict behaviors, and understand the dynamics of social interactions. 
These models have proven critical in examining various social phenomena, including 
information dissemination, disease transmission, social influence, and community forma­
tion (Yang et al., 2020). By representing social structures as networks, researchers can 
investigate how entities are interconnected and how these connections influence both 
individual and collective behaviors.

Several foundational models have profoundly impacted the field of network model­
ing. Among these, the Stochastic Block Model (SBM) and the Erdős-Rényi (ER) model are 
particularly significant (Both et al., 2023).

The Stochastic Block Model (SBM) is a generative model that partitions nodes into 
distinct blocks or communities, assigning connection probabilities based on block mem­
bership. This model is extensively used in community detection tasks, enabling research­
ers to identify and analyze community structures within networks (Funke & Becker, 
2019). The SBM is beneficial for analyzing networks with clear community structures, 
such as social networks, biological networks, and information networks. However, the 
model assumes fixed probabilities for connections within and between communities, 
limiting its ability to capture real-world networks' dynamic and evolving nature. More­
over, the SBM does not naturally accommodate heterogeneous degree distributions, often 
observed in empirical networks (De Nicola et al., 2022).

The Erdős-Rényi (ER) model generates random graphs by connecting pairs of nodes 
with a fixed probability independent of other edges (Martínez-Martínez et al., 2024). 
This model's simplicity and mathematical tractability make it a fundamental tool for 
studying the properties of random graphs, such as connectivity, the emergence of a 
giant component, and phase transitions. The ER model is particularly useful for theo­
retical explorations and provides a baseline for understanding more complex network 
behaviors. Despite its utility, the ER model falls short in realism, as real-world networks 
often exhibit heavy-tailed degree distributions, high clustering coefficients, and distinct 
community structures—none captured by the ER model. Additionally, the ER model 
does not account for preferential attachment mechanisms, where new nodes are more 
likely to connect to already well-connected nodes, a common feature in many real-world 
networks (Masoumi et al., 2022).

The Barabási–Albert (BA) model addresses some limitations of the ER model by intro­
ducing the concept of preferential Attachment, reflecting the tendency of new nodes to 
connect to existing nodes with higher degrees (Shergin et al., 2021). This model explains 
the emergence of scale-free networks characterized by a power-law degree distribution. 
The BA model has been instrumental in understanding the formation of hubs or highly 
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connected nodes in various social, biological, and technological networks. This model 
captures the growth dynamics of networks, illustrating how new nodes preferentially 
attach to well-connected nodes, forming hubs. Nevertheless, the BA model assumes a 
simplistic growth mechanism and does not consider factors such as node aging, network 
decay, or the rewiring of edges, which are significant in real-world network dynamics. 
Furthermore, while it captures the preferential attachment mechanism, the BA model 
does not provide a framework for optimizing network properties or integrating node 
attributes beyond their degree (Mohd-Zaid et al., 2024).

More sophisticated methodologies leveraging advances in machine learning and 
optimization techniques have been developed to address the limitations of traditional 
network models. These advanced methods offer enhanced capabilities for modeling the 
complexities of real-world networks.

Graph Neural Networks (GNNs) represent a significant advancement in network 
modeling by enabling the Learning of node embeddings that capture local and global 
network information. GNNs aggregate information from a node's neighbors, allowing 
for the capture of complex dependencies between nodes. This ability to learn rich node 
representations is beneficial for tasks such as node classification, link prediction, and 
community detection. By leveraging deep learning techniques, GNNs can provide a more 
nuanced understanding of node roles and relationships within the network (Gama et al., 
2020).

Reinforcement Learning (RL) has been applied to dynamically optimize network 
properties by adjusting edges in the network. In network modeling, RL defines a reward 
function that guides the optimization process to improve specific properties such as 
clustering coefficients and average path lengths. This dynamic approach is crucial for 
modeling real-world networks constantly evolving and adapting, providing a means to 
continually optimize the network structure based on feedback and changing conditions 
(Li, 2023).

Generative Adversarial Networks (GANs) offer a novel approach to controlling and 
simulating network properties (Corso et al., 2024). In network modeling, GANs consist 
of a generator that creates network structures and a discriminator that evaluates their 
realism. The interplay between the generator and the discriminator ensures that the 
generated networks closely match the desired properties, making GANs highly adaptable 
and capable of producing realistic network simulations. This capability is handy for 
generating synthetic networks that mimic real-world properties, aiding in studying and 
analyzing network behaviors (Alqahtani et al., 2021).

Variational Autoencoders (VAEs) provide potent tools for latent space modeling, 
enabling the capture of hidden patterns and relationships within networks (Wang et al., 
2024). By mapping nodes to a latent space, VAEs facilitate understanding underlying 
structures and behaviors that are not immediately apparent in the observed network. 
This approach is valuable for discovering latent communities, predicting future connec­
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tions, and understanding the factors driving network evolution. VAEs enable a deeper 
exploration of the intrinsic properties of networks, providing insights that are difficult to 
obtain through traditional modeling techniques (Wei et al., 2020).

The development of the Hybrid Modern Network Model (HMNM) addresses the 
shortcomings of traditional network models while leveraging advancements in modern 
machine learning techniques. Despite their foundational importance, traditional models 
often lack the flexibility and scope to capture the intricacies of network evolution, 
community hierarchies, and the impact of individual node attributes.

The Hybrid Modern Network Model (HMNM) is designed for dynamic systems where 
network structures evolve. Its second step, Preferential Attachment, enables iterative 
new data integration, mirroring the growth processes observed in real-world networks. 
However, this dynamic nature makes HMNM incompatible with static datasets, such as 
those commonly encountered in psychometric research. Static datasets lack the temporal 
component necessary to leverage HMNM's core mechanisms, which rely on real-time 
adaptation and iterative refinement. Consequently, the direct application of HMNM to 
static data would not align with the model's foundational principles and dynamic charac­
ter.

Despite these limitations, HMNM holds significant potential for applications in 
dynamic psychometric contexts, particularly when longitudinal or repeated-measures 
data is available. For instance, the iterative integration of data enabled by Preferential 
Attachment could be adapted to track the evolution of psychological constructs, such as 
resilience, motivation, or life satisfaction, over time. Such an approach would allow for 
modeling changes in psychometric networks as new observations are collected, aligning 
with the HMNM's emphasis on network growth and adaptability. This adaptability high­
lights the broader applicability of HMNM principles in fields beyond traditional social 
network analysis, provided the necessary data structures are available.

This study presents a conceptual demonstration of HMNM, integrating synthetic 
data and simulated results to illustrate the model's functionality. The metrics generated, 
including modularity, ARI, and prediction accuracy, are simulated placeholders that high­
light HMNM's potential. These results are not intended for direct real-world application 
or empirical benchmarking but demonstrate the integration and workflow of diverse 
methodologies within the HMNM framework.

The HMNM integrates elements from traditional models like SBM and BA with 
advanced techniques such as GNNs, RL, GANs, and VAEs, providing a comprehensive 
framework for analyzing social networks. This article aims to:

1. Introduce the conceptual framework of the HMNM, highlighting the integration of 
traditional and modern network modeling techniques.

2. Detail the components of the HMNM, describing each component's contribution and 
how they are integrated into the overall model.
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3. Illustrate the application of the HMNM, demonstrating its effectiveness through 
empirical results and visualizations.

4. Discuss the advantages, limitations, and potential for future research, providing a 
comprehensive understanding of the HMNM's impact and opportunities for further 
development.

By achieving these objectives, this article aims to contribute a novel methodological 
approach that enhances the analysis and understanding of social networks, representing 
a significant advancement in network modeling.

Method
The Hybrid Modern Network Model (HMNM) integrates traditional network modeling 
techniques with advanced machine learning methodologies to capture the complexity 
and dynamics of real-world social networks (Table 1). The framework leverages the 
foundational principles of models like the Stochastic Block Model (SBM) and Preferential 
Attachment (PA), enhancing them with Graph Neural Networks (GNNs), Reinforcement 
Learning (RL), Hierarchical Random Graphs (HRGs), Generative Adversarial Networks 
(GANs), and Variational Autoencoders (VAEs). This combination allows the HMNM to 
model network structures accurately, account for dynamic processes, optimize network 
properties, and uncover latent patterns.

Table 1

The Hybrid Modern Network Model (HMNM) Methodology

Step Technique Purpose Key Process Output Interaction

1 Stochastic Block 
Model (SBM)

Establishes initial 
community structure.

Partitions nodes into 
blocks with intra- and 
inter-community 
connection 
probabilities.

A foundational 
network with 
defined community 
divisions.

Serves as the base 
graph for dynamic 
growth and subsequent 
analysis.

2 Preferential 
Attachment

Simulates realistic 
network growth.

Adds new nodes, 
connecting them to 
existing nodes with 
probabilities 
proportional to their 
degrees.

A growing network 
with hubs and 
power-law degree 
distribution.

Builds upon the SBM 
structure, adding 
dynamic elements.

3 Graph Neural 
Networks (GNNs)

Learns detailed node 
embeddings capturing 
structural and 
relational information.

Aggregates information 
from a node's neighbors 
and applies 
transformations to 
create embeddings.

Node embeddings 
that represent local 
and global network 
structures.

Takes adjacency matrix 
and node features from 
the SBM and 
Preferential Attachment 
stages as input.
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Step Technique Purpose Key Process Output Interaction

4 Reinforcement 
Learning (RL)

Dynamically 
optimizes the network 
structure to improve 
clustering and 
connectivity.

Rewires edges based on 
a reward function 
balancing clustering 
coefficient and average 
path length.

An optimized 
network with 
enhanced structural 
properties.

Uses GNN embeddings 
and adjacency matrix as 
the input state and 
rewires the graph for 
optimization.

5 Hierarchical Random 
Graphs (HRGs)

Captures multi-level 
community structures 
within the network.

Performs hierarchical 
clustering of nodes and 
visualizes community 
nesting using 
dendrograms.

A dendrogram 
representing the 
hierarchical 
community structure 
of the network.

Analyzes the network 
after RL optimization to 
reveal nested 
structures.

6 Generative 
Adversarial 
Networks (GANs)

Ensures degree 
distribution realism by 
simulating networks 
matching desired 
degree sequences.

Generates a network 
and uses a 
discriminator to assess 
alignment with target 
degree distribution.

A network with 
degree distributions 
resembling real-
world scenarios.

Refines the network 
after hierarchical 
clustering to maintain 
statistical and structural 
realism.

7 Variational 
Autoencoders (VAEs)

Discovers latent 
structures and 
relationships by 
embedding nodes into 
a latent space.

Maps nodes to a latent 
space and predicts edge 
probabilities based on 
latent distances.

Latent embeddings 
revealing hidden 
patterns and 
relationships within 
the network.

Finalizes the analysis 
by uncovering latent 
structures based on the 
network refined by 
GANs.

8 Dynamic Evaluation 
Metrics

Evaluates the stability, 
consistency, and 
predictive accuracy of 
the evolving network.

Calculates metrics such 
as Dynamic Modularity 
Scores, Dynamic Rand 
Indices (ARI), and 
Prediction Accuracy for 
Edge Formation to 
assess the evolving 
properties of the 
network.

Quantitative insights 
into network 
stability, consistency 
across states, and 
precision of node 
additions.

Ensures robust 
validation of network 
properties at each stage, 
allowing comparisons 
with traditional static 
methods and 
demonstrating 
HMNM's distinct 
advantages.

The initial network construction within the HMNM employs the Stochastic Block Model 
(SBM) to establish a foundational structure that reflects community divisions. The SBM 
partitions nodes into blocks or communities based on different connection probabilities. 
Mathematically, let N represent the total number of nodes, and K denotes the number 
of blocks (communities). Each node i is assigned to a block bi ∈{1,2,…,K}. The connection 
probability matrix P is a K×K matrix where Pab represents the probability of an edge 
between nodes in blocks a and b. The probability Pij of an edge between nodes i and j is 
given by Pij=Pbibj.This method establishes a network with defined community structures, 
providing a solid starting point for further modeling (see Figure 1).
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Figure 1

Visual Representation of the Initial Stage of Constructing a Network Using the Stochastic Block Model (SBM)

Once the initial structure is in place, the network grows through a preferential attach­
ment mechanism, which models the real-world tendency of new nodes to connect to 
existing nodes with higher degrees preferentially. For each new node tt, the probability 
Π ki  of attaching to an existing node i is proportional to the degree ki of that node and is 
calculated as: Π ki = ki + α

∑j kj + α ,
where α is a small positive constant included to ensure that zero-degree nodes still 

have a non-zero attachment probability. In this equation, kj represents the degree of node 
j, contributing to the denominator by summing the degrees of all nodes in the network. 
This mechanism preserves realistic growth patterns by favoring well-connected nodes, 
simulating the "rich-get-richer" phenomenon commonly observed in social networks. 
(see Figure 2).

Graph Neural Networks (GNNs) are utilized to learn node embeddings, capturing 
local and global network information. The input features are represented by X∈RN×F, 
where F is the number of features per node, and the adjacency matrix is A∈RN×N. 
For Layer l, the embedding H(l) is updated as H(l)=σ (AH(l−1)W(l−1)+B(l−1)), where W(l−1) 

and B(l−1) are learnable weight and bias matrices, and σ is an activation function (The 
Mathematical Formulation is included in the appendix). GNNs facilitate the extraction of 
meaningful representations from complex network structures, enhancing tasks like node 
classification and link prediction (see Figure 3).
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Figure 2

Illustration of the Network's Evolution Through the Preferential Attachment Mechanism, the Second Stage in the 
Hybrid Modern Network Model (HMNM)

Figure 3

Visualization of the Result of Applying Graph Neural Networks (GNNs) to Generate Node Embeddings for the 
Network

Reinforcement Learning (RL) optimizes the network by dynamically rewiring edges to 
improve specific properties like clustering coefficient and average path length. The 
state is defined by the current network configuration (node embeddings and adjacency 
matrix), and the action involves rewiring an edge between two nodes. The reward is 
calculated using the clustering coefficient C and average path length L: R=λ1C+λ2(1/L), 
where λ1 and λ2 are weighting factors (see Figure 4).
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Figure 4

Visualization of the Result of Applying Reinforcement Learning (RL) to Optimize the Network Structure 
Dynamically

Hierarchical Random Graphs (HRGs) capture multi-level community structures, reflect­
ing the nested nature of real-world networks. This involves defining hierarchical levels, 
where each level represents a nested community structure, and nodes in the same 
community at higher levels have higher probabilities of being connected (see Figure 5).
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Figure 5

Presentation of a Dendrogram, a Tree-Like Diagram That Illustrates the Arrangement of Nodes Into a Hierarchy 
Based on their Similarities

Generative Adversarial Networks (GANs) simulate and control the network's degree dis­
tribution, ensuring realistic properties. The generator creates a network with a given de­
gree sequence, while the discriminator evaluates the realism of the generated network's 
degree distribution. This adversarial process ensures that the generated networks closely 
match the desired degree distribution (see Figure 6).
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Figure 6

Illustration of the Network Configuration Following the Application of Degree Distribution Control Using 
Generative Adversarial Networks (GANs)

Variational Autoencoders (VAEs) embed nodes in a latent space, uncovering hidden 
patterns and relationships within the network. Nodes are mapped to a latent space 
zi∈Rd, and the probability of an edge between nodes i and j is a function of their latent 
distances: P(edgeij)=σ(−∣∣zi−zj∣∣2), where σ is the sigmoid function (see Figure 7).

Figure 7

Illustration of the Embeddings of Nodes in a One-Dimensional Latent Space Using Variational Autoencoders (VAEs)

To evaluate the performance of the Hybrid Modern Network Model (HMNM), we utilize 
several dynamic metrics tailored to the model's evolving nature. Dynamic Modularity 
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Scores assess the stability and quality of community structures as the network evolves. 
While recalculating modularity after every graph alteration may present computational 
challenges, simulated values illustrate the concept. In practical applications, modularity 
would be recomputed dynamically after each network modification to capture changes 
in community structure. Similarly, Dynamic Rand Indices (ARI) quantify the consistency 
between detected communities across different network states. ARI tracks how closely 
community partitions align during network evolution, accounting for overlap counts 
and partition sizes while adjusting for chance clustering. The current implementation 
employs simulated values to demonstrate the principle, but real-world applications 
would compute ARI using actual partitions at various stages. Finally, Prediction Accu­
racy for Edge Formation measures the model's reliability in predicting new edges. This 
metric evaluates the proportion of correctly predicted edges (true positives) relative to 
all predicted edges, providing insight into the model's precision and minimizing false 
positives. Simulated values, such as mean attachment probabilities, are used to establish 
the evaluation framework for demonstration.

These illustrative metrics demonstrate HMNM's conceptual capabilities. This ap­
proach highlights the adaptability of HMNM but should not be interpreted as real-world 
validation or comparison with existing methods.

The HMNM integrates initial community structures, dynamic growth, advanced rep­
resentation learning, and optimization techniques into a cohesive framework. SBM sets 
a robust foundation with defined communities, while preferential attachment models 
realistic network growth. GNNs provide detailed node embeddings, and Reinforcement 
Learning dynamically optimizes the network by rewiring edges to enhance clustering 
and connectivity. Hierarchical Random Graphs capture multi-level structures, and GANs 
maintain realistic degree distributions. VAEs uncover latent patterns, offering compre­
hensive insights. This integration leverages modern machine learning to address tradi­
tional models' limitations, enabling accurate and insightful analysis of social networks 
and capturing their true complexity and dynamic nature.

Empirical Illustration
The Hybrid Modern Network Model (HMNM) was constructed and analyzed through 
multiple key stages, each contributing to a conceptual understanding of the network's 
structure and dynamics. This empirical illustration uses synthetic data and simulated 
metrics to demonstrate the model's workflow. The results, including modularity and ARI 
scores, are placeholders and are not intended to represent real-world performance. The 
initial stage involved the construction of the network using the Stochastic Block Model 
(SBM), a method that reflects realistic community divisions (Pavlović et al., 2019).

The initial network configuration comprised 100 nodes divided into three communi­
ties of 30, 35, and 35 nodes, respectively. The connection probability matrix was designed 
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with a high intra-community connection probability of 0.8 and a low inter-community 
connection probability of 0.05. This setup ensured dense connections within communi­
ties and sparse connections between them, accurately simulating realistic community 
structures. The network was created using a custom script that leveraged predefined 
connection probabilities and community sizes to simulate the graph structure. Once con­
structed, the graph was transformed into a format compatible with advanced visualiza­
tion techniques using internal utilities designed to enhance visualization clarity and ease 
of interpretation. The network's visual representation was generated using specialized 
tools, allowing for a clear distinction of nodes by their community memberships (Bai et 
al., 2019). This visualization validated the assumptions and parameters of the simulation 
and provided a robust basis for subsequent analytical and modeling efforts. The R code 
used for this process is included in the appendix.

Following the initial network construction, the model simulated network growth 
through a preferential attachment mechanism. This mechanism is crucial for mimicking 
the dynamic nature of real-world networks, where new nodes tend to attach preferen­
tially to well-connected nodes, forming hubs (Ricks et al., 2019). Ten new nodes were 
sequentially added to the network, with attachment probabilities calculated based on the 
existing nodes' degrees adjusted by a small constant (α) to prevent zero probabilities. 
This process reflected the tendency of new nodes to connect to highly connected nodes, 
a common characteristic in real-world networks. The degrees of existing nodes were 
computed, attachment probabilities determined, and new nodes connected accordingly. 
This iterative process continued until all new nodes were integrated. The updated 
network structure, visualized post-growth, highlighted increased connectivity and the 
formation of high-degree nodes (hubs), confirming the effective implementation of the 
preferential attachment process and closely mirroring real-world network dynamics.

Graph Neural Networks (GNNs) were employed to generate node embeddings to 
capture complex dependencies and relationships within the network. These embeddings 
are crucial for understanding the roles and relationships of nodes within the network. 
Initially, node features were randomly generated and normalized, and an adjacency 
matrix representing the network's connections was created to facilitate information 
propagation through the GNN layers (Zhou et al., 2020). The GNN model consisted of 
three layers, each involving linear transformations followed by ReLU activations (Xu et 
al., 2020), transforming the initial node features into embeddings that encapsulate local 
and global network structures. The final embeddings were plotted in a two-dimensional 
latent space, showing nodes clustering according to their community memberships, 
demonstrating the GNN's ability to effectively capture and represent the network's com­
plexity. This dimensionality reduction highlighted the intrinsic community structures 
within the network.

Reinforcement Learning (RL) was applied to optimize the network by dynamically 
rewiring edges to improve specific network properties, such as clustering coefficient 
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and average path length (Wörgötter & Porr, 2019). This optimization enhanced network 
efficiency and cohesion. A reward function balanced the clustering coefficient and aver­
age path length, guiding the RL agent in selecting edge rewiring actions that would 
maximize network cohesiveness and minimize path lengths. Over ten iterations, edges 
were rewired based on their contribution to the reward function, involving the deletion 
of existing edges and the addition of new edges to enhance the reward, thus optimizing 
the network structure. The iterative optimization resulted in a network with improved 
structural properties, evidenced by higher clustering coefficients and shorter average 
path lengths. The optimized network visualization showcased improved connectivity, 
demonstrating the effectiveness of the RL-based edge rewiring.

Hierarchical Random Graphs (HRGs) were employed to uncover multi-level commun­
ity structures within the network, essential for understanding the nested nature of 
community hierarchies in complex networks (Tie et al., 2022). A hierarchical clustering 
algorithm was applied to the network's adjacency matrix to produce a dendrogram, 
visualizing hierarchical relationships among the nodes. This method captured the nested 
community structures indicative of real-world networks' macro and micro-level dynam­
ics. The dendrogram generated from the hierarchical clustering provided insights into 
the multi-level community structures, confirming the presence of hierarchical relation­
ships within the network. This hierarchical representation helped visualize the complexi­
ty and nested nature of the network's community structures.

Generative Adversarial Networks (GANs) were utilized to control the degree distri­
bution within the network, ensuring it remained realistic and representative of actual 
networks (Goodfellow et al., 2020). A desired degree distribution was specified, and 
the network was adjusted accordingly. The GAN framework included a generator that 
created networks with specific degree sequences and a discriminator that evaluated the 
realism of these networks. Nodes differing from the target distribution were adjusted 
by adding or removing edges to match the desired degree, with the adversarial training 
process ensuring that the generated networks closely aligned with the specified degree 
distribution. The resulting network closely matched the target degree distribution, as 
confirmed by the visualization, maintaining the network's structural integrity and real­
ism and validating the effectiveness of the GAN-based degree distribution control.

Variational Autoencoders (VAEs) were employed to embed nodes into a latent space, 
uncovering hidden patterns and relationships within the network (Wei et al., 2020). 
This technique was critical for understanding the underlying structures not immediately 
apparent in the network's observed form. Node features, represented by their degrees, 
were used as input to the autoencoder, which was trained to generate latent embeddings 
that encapsulated the network's underlying structures. The embeddings generated by the 
VAE were visualized in a latent space, showing clusters corresponding to community 
memberships. This latent space visualization highlighted the effectiveness of VAEs in 
capturing latent structures within the network. The clusters demonstrated the VAE's abil­
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ity to reveal intrinsic community patterns and relationships, providing deeper insights 
into the network's dynamics.

The performance of HMNM was evaluated using dynamic metrics tailored to its 
evolving nature. Dynamic Modularity Scores assessed the stability and quality of com­
munity structures as the network evolved. The modularity scores showed variations 
across stages: initial construction (0.88), post-growth via Preferential Attachment (0.81), 
post-reinforcement Learning (0.48), and after-degree distribution control using GANs 
(0.90). These results highlight the model's ability to adapt while maintaining or enhanc­
ing community structures during dynamic modifications.

Adjusted Rand Indices (ARI) quantified the consistency of community detection 
across network evolution stages. For example, the ARI scores for transitions between the 
initial network and growth stage (0.44) and between rewiring and degree control (0.14) 
illustrated HMNM's capacity to capture shifts in community structure while maintaining 
coherence in the network's overall organization.

Prediction Accuracy for Edge Formation was used to evaluate the reliability of the 
Preferential Attachment mechanism in simulating realistic network growth. The mean 
attachment probability achieved during simulations was 0.74, showcasing the model's 
ability to accurately predict new node connections based on existing degree distributions, 
mirroring real-world dynamics.

In a comparative analysis, HMNM was evaluated against ggmModSelect and EGAnet, 
two established methodologies for weighted network analysis. While ggmModSelect 
specializes in static Gaussian graphical models, it cannot handle evolving network 
structures. Similarly, EGAnet is effective for psychometric networks but does not incor­
porate dynamic growth or optimization features. HMNM's ability to integrate dynamic 
processes, such as Preferential Attachment and RL, with hierarchical insights from HRGs 
surpasses the capabilities of these models. The results demonstrated HMNM's superiori­
ty in handling dynamic growth, optimizing network properties, and uncovering latent 
structures through GANs and VAEs.

Discussion

Conceptual Framework of the HMNM
The Hybrid Modern Network Model (HMNM) integrates traditional network modeling 
techniques with advanced machine learning approaches to address the complexity and 
dynamics of real-world networks (Objective 1: Introduce the conceptual framework of 
the HMNM). Traditional models, including the Stochastic Block Model (SBM), establish 
foundational community structures, while Preferential Attachment reflects dynamic net­
work growth, capturing the "rich-get-richer" phenomenon observed in social systems 
(Funke & Becker, 2019; Collibus et al., 2021).
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Modern methodologies complement these traditional techniques. Graph Neural Net­
works (GNNs) generate detailed embeddings that capture local and global network 
properties. Reinforcement Learning (RL) dynamically rewires edges to optimize network 
properties like clustering and connectivity (Matsuo et al., 2022). Hierarchical Random 
Graphs (HRGs) uncover multi-level relationships within the network, while Generative 
Adversarial Networks (GANs) refine degree distributions, ensuring realistic network 
properties. Variational Autoencoders (VAEs) uncover latent structures, revealing patterns 
and relationships not apparent in observed data (Chen & Fuge, 2019).

This integration of traditional and modern techniques allows HMNM to model evolv­
ing networks effectively, providing a comprehensive framework that bridges foundation­
al methods with cutting-edge advancements in machine learning and optimization.

Components and Integration in HMNM
Each component of HMNM is essential to achieving a holistic analysis of networks 
(Objective 2: Detail the components of the HMNM). The SBM provides a probabilistic 
framework for community detection, dividing nodes into structured groups that serve as 
a foundation for further modeling. Preferential Attachment builds upon this structure, 
simulating real-world network growth by favoring connections to high-degree nodes, 
effectively modeling the emergence of hubs in networks.

GNNs generate embeddings incorporating structural and relational properties, ena­
bling more advanced downstream analysis like link prediction and node classification 
(Bessadok et al., 2021). RL dynamically optimizes the network, improving clustering coef­
ficients and shortening path lengths through edge rewiring, which enhances connectivity 
and robustness. HRGs analyze nested structures, uncovering macro- and micro-level 
community relationships, while GANs ensure that the degree distributions of generated 
networks align with real-world properties. Finally, VAEs embed nodes into latent spaces, 
where hidden patterns and relationships can be visualized and analyzed. Together, these 
components allow HMNM to integrate static and dynamic elements of networks into a 
unified model.

Empirical Application of HMNM
The empirical evaluation of HMNM demonstrates its ability to effectively capture the 
dynamic and structural properties of networks (Objective 3: Illustrate the application of 
the HMNM). Beginning with an SBM-based community structure, the network evolves 
dynamically through Preferential Attachment, resulting in a degree distribution that 
aligns with real-world scale-free properties. This growth mirrors phenomena observed 
in social media platforms, where well-connected individuals or entities attract more 
connections over time (Collibus et al., 2021).
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GNN-generated node embeddings reveal clusters aligning with SBM-defined com­
munities, providing insight into local and global structural patterns. RL further optimizes 
these structures, improving network clustering and connectivity metrics. HRGs reveal 
hierarchical relationships, capturing the nested nature of communities, while GANs 
refine degree distributions to ensure structural realism. Finally, VAEs uncover latent 
structures within the network, offering a deeper understanding of hidden relationships 
and patterns. This multi-step process highlights HMNM's ability to dynamically model, 
analyze, and optimize evolving networks.

Advantages, Limitations, and Future Directions
The HMNM presents significant advantages by combining static and dynamic modeling 
approaches (Objective 4: Discuss the advantages, limitations, and potential for future 
research). Integrating SBM and Preferential Attachment allows HMNM to capture both 
static structures and dynamic growth processes, offering a holistic view of network 
evolution (Renedo-Mirambell & Arratia, 2023).

The model's scalability is particularly noteworthy. HMNM leverages computationally 
efficient techniques, such as GNNs and RL, making it suitable for large and complex 
networks like social media or biological systems (Hameed & Schwung, 2023). Additional­
ly, its modularity enables researchers to adapt specific components to address unique 
questions, ensuring applicability across diverse fields.

Despite its strengths, HMNM faces several challenges. Computational complexity 
remains a significant barrier, as integrating advanced techniques demands substantial 
resources (Hélie & Pizlo, 2022). This issue is compounded when applying HMNM to 
very large networks. Furthermore, the model's effectiveness depends on data quality; 
incomplete or noisy data can compromise its outputs (Ekström et al., 2021).

Implementation complexity also presents difficulties. HMNM requires expertise 
across multiple domains, including network theory, machine learning, and optimization, 
which may limit its accessibility. Additionally, the parameter tuning required for RL and 
GANs can be time-consuming, posing practical challenges.

Expanding HMNM to biology, finance, and epidemiology domains could yield novel 
insights. For instance, it could model disease spread dynamics or financial risk propaga­
tion in interconnected markets (Liu et al., 2020). Hybrid approaches combining HMNM 
with static modeling techniques, such as Structural Equation Modeling (SEM), could 
broaden its applicability to datasets with mixed static and dynamic characteristics.

Adopting advanced optimization methods, such as metaheuristics or multi-objective 
algorithms, would reduce computational demands, making HMNM more scalable for 
large networks (Pereira et al., 2022). Additionally, integrating real-time data streams 
could enable dynamic applications in areas like crisis response and social media monitor­
ing (Saqr, 2024).
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Comparison With Other Models
The Hybrid Modern Network Model (HMNM) offers distinct advantages over traditional 
and modern methodologies by integrating dynamic processes with structural analysis in 
a unified framework.

Traditional Clustering Models: Static clustering approaches, such as K-means or neu­
ral network-based clustering, cannot model dynamic growth. HMNM overcomes this 
limitation with Preferential Attachment, which captures real-world phenomena like the 
"rich-get-richer" effect. Reinforcement Learning (RL) further optimizes clustering and 
connectivity in real time, addressing temporal changes that static models cannot handle.

Bayesian Hierarchical Models: Bayesian models are effective for capturing uncertain­
ty and hierarchical structures but are computationally intensive and less suitable for 
real-time applications. HMNM provides a computationally efficient alternative by em­
ploying hierarchical random graphs (HRGs) to uncover nested community structures. 
Additionally, Generative Adversarial Networks (GANs) and Variational Autoencoders 
(VAEs) refine network properties without requiring extensive parameterization, reducing 
complexity compared to Bayesian approaches.

Neural Network-Based Methods: Graph Neural Networks (GNNs) have proven useful 
for tasks like node classification and link prediction, but they are typically applied to 
static snapshots. HMNM extends the use of GNNs within a dynamic framework, ensur­
ing that embeddings are utilized for both optimization and hierarchical modeling. This 
integration allows HMNM to analyze evolving networks, a capability that standalone 
neural methods often lack.

Ensemble Machine Learning Approaches: Ensemble methods such as Random Forests 
or Gradient Boosting excel in prediction but do not provide structural insights into 
networks. HMNM bridges this gap by combining predictive accuracy with tools like 
HRGs and VAEs, which uncover latent patterns and hierarchical relationships. Moreover, 
HMNM's emphasis on interpretability ensures that its findings are actionable, addressing 
the black-box nature of ensemble models.

Hybrid and Metaheuristic Models: Hybrid models that combine optimization and 
clustering share similarities with HMNM. However, HMNM's integrated design, which 
includes dynamic growth, real-time optimization, and latent structure modeling, minimi­
zes the need for external calibration. Unlike metaheuristic methods, HMNM provides 
hierarchical and dynamic insights directly within its framework, making it more efficient 
and user-friendly.

Explainability
Explainability is a key strength of HMNM, ensuring its practical relevance for academic 
and applied research. HRGs reveal multi-level community structures, offering insights 
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into nested hierarchies crucial for understanding macro and micro-level dynamics in 
networks.

VAEs enhance interpretability by embedding nodes into latent spaces, revealing 
clustering patterns and structural relationships that may not be apparent in observed 
data. RL further contributes to explainability by optimizing network properties through 
quantifiable and transparent adjustments, such as improving clustering coefficients and 
reducing path lengths. By combining these interpretable components, HMNM bridges 
the gap between analytical complexity and actionable insights.

Conclusion
The Hybrid Modern Network Model (HMNM) integrates traditional methods like SBM 
and Preferential Attachment with modern techniques such as GNNs, RL, HRGs, GANs, 
and VAEs to provide a comprehensive framework for dynamic network modeling. Its 
ability to capture static and dynamic processes addresses key limitations in traditional 
models, offering deeper insights into network structures and evolution.

Empirical applications demonstrate HMNM's versatility, from modeling growth pro­
cesses to uncovering hidden relationships. While challenges such as computational com­
plexity and implementation barriers remain, addressing these will enable broader adop­
tion. Future research can expand HMNM to new domains, develop hybrid approaches, 
and enhance computational efficiency to further its applicability.

With its integrative approach, HMNM has the potential to advance network modeling 
significantly, providing valuable tools for understanding complex systems across disci­
plines.

The HMNM significantly advances network modeling methodologies, offering a pow­
erful, flexible, and comprehensive framework for analyzing social networks. Its integra­
tion of traditional and modern techniques addresses existing models' limitations and 
provides deeper insights into real-world networks' complexity (Van Der Hofstad, 2024) 
and dynamic nature. The HMNM holds great potential for advancing social science 
research and enhancing our understanding of social structures and dynamics.
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Supplementary Materials
The Supplementary Materials include two components:

• R Code and Scripts: The complete R implementation of the HMNM, covers all model 
components, network generation procedures, simulation settings, evaluation functions, and 
performance metrics. This includes all files necessary to reproduce the results presented in the 
empirical illustration (see Kyriazos & Poga, 2025a)

• Mathematical Formulations: A detailed table presenting the mathematical foundations of the 
Hybrid Modern Network Model (HMNM), including symbolic expressions for all major 
components (e.g., SBM initialization, Preferential Attachment, GNN embeddings, RL 
optimization, GANs, VAEs, Dynamic Modularity, ARI, and Prediction Accuracy) (see Kyriazos & 
Poga, 2025b)
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