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Abstract

This research addresses the limitations of traditional network models in capturing the complexity
and dynamics of real-world social networks. Motivated by the need for a more comprehensive and
flexible framework, the study introduces the Hybrid Modern Network Model (HMNM). The
HMNM integrates foundational models like the Stochastic Block Model (SBM) and Preferential
Attachment with advanced machine learning techniques, including Graph Neural Networks
(GNNs), Reinforcement Learning (RL), Hierarchical Random Graphs (HRGs), Generative
Adversarial Networks (GANs), and Variational Autoencoders (VAEs). The methods employed
involve constructing initial network structures using SBM, simulating network growth through
preferential Attachment, learning node embeddings with GNNs, dynamically optimizing network
properties using RL, capturing hierarchical community structures with HRGs, controlling degree
distributions using GANs, and uncovering latent patterns with VAEs. The empirical illustration of
HMNM highlights its effectiveness in providing a more realistic, scalable, and comprehensive
analysis of social networks compared to traditional models. Integrating diverse methodologies
allows for accurately modeling of network structures, dynamic processes, and latent patterns. In
conclusion, the HMNM offers significant advancements in network modeling, providing a robust
and flexible framework for analyzing social networks. This model overcomes the limitations of
traditional models and delivers deeper insights into the complexities and dynamics of social
structures. Future research will optimize the HMNM and explore its applications across various
domains. The R programming code used for the network simulations and visualizations is
conceptual and demonstrates the HMNM framework. The results and metrics are illustrative
placeholders, emphasizing the methodology rather than empirical validation.
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Non-Technical Summary

Background

Network models are essential tools in social science research, allowing for the detailed anal-
ysis of complex relational data. These models enable exploring social networks, representing
interactions and relationships among individuals, organizations, or other entities. By using
network models, researchers can uncover patterns, predict behaviors, and understand the
dynamics of social interactions. Traditional models like the Stochastic Block Model (SBM),
Erd6s-Rényi (ER) model, and Barabasi-Albert (BA) model have significantly impacted the
field, but they have limitations in capturing the evolving nature of real-world networks.

Why was this study done?

The study addressed the shortcomings of traditional network models, which often lack the
flexibility and scope to capture the intricacies of network evolution, community hierarchies,
and the impact of individual node attributes. By integrating modern machine learning
techniques with traditional network models, the study aims to develop a Hybrid Modern
Network Model (HMNM) that provides a comprehensive framework for analyzing social
networks.

What did the researchers do and find?

Researchers integrated elements from traditional models like SBM and BA with advanced
techniques such as Graph Neural Networks (GNNs), Reinforcement Learning (RL), Gener-
ative Adversarial Networks (GANs), and Variational Autoencoders (VAEs) to create the
HMNM. This model was designed to model network structures accurately, account for
dynamic processes, optimize network properties, and uncover latent patterns. The HMNM
demonstrated its effectiveness in providing a more realistic, scalable, and comprehensive
analysis of social networks compared to traditional models.

What do these findings mean?

The findings suggest that the HMNM can significantly enhance the analysis and under-
standing of social networks. By integrating diverse methodologies, the HMNM offers a
powerful, flexible, and comprehensive framework that addresses the limitations of tradition-
al models. This advancement in network modeling methodologies holds great potential for
advancing social science research and enhancing our understanding of social structures
and dynamics. Including the R programming code further facilitates the application and
adaptation of the HMNM in various research contexts.
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Network models have become fundamental tools in social science research, enabling
the detailed analysis of complex relational data (Bellingeri et al., 2023). These models
help explore social networks, representing interactions and relationships among individ-
uals, organizations, or other entities. By employing network models, researchers can
uncover patterns, predict behaviors, and understand the dynamics of social interactions.
These models have proven critical in examining various social phenomena, including
information dissemination, disease transmission, social influence, and community forma-
tion (Yang et al., 2020). By representing social structures as networks, researchers can
investigate how entities are interconnected and how these connections influence both
individual and collective behaviors.

Several foundational models have profoundly impacted the field of network model-
ing. Among these, the Stochastic Block Model (SBM) and the Erdés-Rényi (ER) model are
particularly significant (Both et al., 2023).

The Stochastic Block Model (SBM) is a generative model that partitions nodes into
distinct blocks or communities, assigning connection probabilities based on block mem-
bership. This model is extensively used in community detection tasks, enabling research-
ers to identify and analyze community structures within networks (Funke & Becker,
2019). The SBM is beneficial for analyzing networks with clear community structures,
such as social networks, biological networks, and information networks. However, the
model assumes fixed probabilities for connections within and between communities,
limiting its ability to capture real-world networks' dynamic and evolving nature. More-
over, the SBM does not naturally accommodate heterogeneous degree distributions, often
observed in empirical networks (De Nicola et al., 2022).

The Erd6s-Rényi (ER) model generates random graphs by connecting pairs of nodes
with a fixed probability independent of other edges (Martinez-Martinez et al., 2024).
This model's simplicity and mathematical tractability make it a fundamental tool for
studying the properties of random graphs, such as connectivity, the emergence of a
giant component, and phase transitions. The ER model is particularly useful for theo-
retical explorations and provides a baseline for understanding more complex network
behaviors. Despite its utility, the ER model falls short in realism, as real-world networks
often exhibit heavy-tailed degree distributions, high clustering coefficients, and distinct
community structures—none captured by the ER model. Additionally, the ER model
does not account for preferential attachment mechanisms, where new nodes are more
likely to connect to already well-connected nodes, a common feature in many real-world
networks (Masoumi et al., 2022).

The Barabasi-Albert (BA) model addresses some limitations of the ER model by intro-
ducing the concept of preferential Attachment, reflecting the tendency of new nodes to
connect to existing nodes with higher degrees (Shergin et al., 2021). This model explains
the emergence of scale-free networks characterized by a power-law degree distribution.
The BA model has been instrumental in understanding the formation of hubs or highly
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connected nodes in various social, biological, and technological networks. This model
captures the growth dynamics of networks, illustrating how new nodes preferentially
attach to well-connected nodes, forming hubs. Nevertheless, the BA model assumes a
simplistic growth mechanism and does not consider factors such as node aging, network
decay, or the rewiring of edges, which are significant in real-world network dynamics.
Furthermore, while it captures the preferential attachment mechanism, the BA model
does not provide a framework for optimizing network properties or integrating node
attributes beyond their degree (Mohd-Zaid et al., 2024).

More sophisticated methodologies leveraging advances in machine learning and
optimization techniques have been developed to address the limitations of traditional
network models. These advanced methods offer enhanced capabilities for modeling the
complexities of real-world networks.

Graph Neural Networks (GNNs) represent a significant advancement in network
modeling by enabling the Learning of node embeddings that capture local and global
network information. GNNs aggregate information from a node's neighbors, allowing
for the capture of complex dependencies between nodes. This ability to learn rich node
representations is beneficial for tasks such as node classification, link prediction, and
community detection. By leveraging deep learning techniques, GNNs can provide a more
nuanced understanding of node roles and relationships within the network (Gama et al.,
2020).

Reinforcement Learning (RL) has been applied to dynamically optimize network
properties by adjusting edges in the network. In network modeling, RL defines a reward
function that guides the optimization process to improve specific properties such as
clustering coefficients and average path lengths. This dynamic approach is crucial for
modeling real-world networks constantly evolving and adapting, providing a means to
continually optimize the network structure based on feedback and changing conditions
(Li, 2023).

Generative Adversarial Networks (GANs) offer a novel approach to controlling and
simulating network properties (Corso et al., 2024). In network modeling, GANs consist
of a generator that creates network structures and a discriminator that evaluates their
realism. The interplay between the generator and the discriminator ensures that the
generated networks closely match the desired properties, making GANs highly adaptable
and capable of producing realistic network simulations. This capability is handy for
generating synthetic networks that mimic real-world properties, aiding in studying and
analyzing network behaviors (Alqahtani et al., 2021).

Variational Autoencoders (VAEs) provide potent tools for latent space modeling,
enabling the capture of hidden patterns and relationships within networks (Wang et al.,
2024). By mapping nodes to a latent space, VAEs facilitate understanding underlying
structures and behaviors that are not immediately apparent in the observed network.
This approach is valuable for discovering latent communities, predicting future connec-
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tions, and understanding the factors driving network evolution. VAEs enable a deeper
exploration of the intrinsic properties of networks, providing insights that are difficult to
obtain through traditional modeling techniques (Wei et al., 2020).

The development of the Hybrid Modern Network Model (HMNM) addresses the
shortcomings of traditional network models while leveraging advancements in modern
machine learning techniques. Despite their foundational importance, traditional models
often lack the flexibility and scope to capture the intricacies of network evolution,
community hierarchies, and the impact of individual node attributes.

The Hybrid Modern Network Model (HMNM) is designed for dynamic systems where
network structures evolve. Its second step, Preferential Attachment, enables iterative
new data integration, mirroring the growth processes observed in real-world networks.
However, this dynamic nature makes HMNM incompatible with static datasets, such as
those commonly encountered in psychometric research. Static datasets lack the temporal
component necessary to leverage HMNM's core mechanisms, which rely on real-time
adaptation and iterative refinement. Consequently, the direct application of HMNM to
static data would not align with the model's foundational principles and dynamic charac-
ter.

Despite these limitations, HMNM holds significant potential for applications in
dynamic psychometric contexts, particularly when longitudinal or repeated-measures
data is available. For instance, the iterative integration of data enabled by Preferential
Attachment could be adapted to track the evolution of psychological constructs, such as
resilience, motivation, or life satisfaction, over time. Such an approach would allow for
modeling changes in psychometric networks as new observations are collected, aligning
with the HMNM's emphasis on network growth and adaptability. This adaptability high-
lights the broader applicability of HMNM principles in fields beyond traditional social
network analysis, provided the necessary data structures are available.

This study presents a conceptual demonstration of HMNM, integrating synthetic
data and simulated results to illustrate the model's functionality. The metrics generated,
including modularity, ARI, and prediction accuracy, are simulated placeholders that high-
light HMNM's potential. These results are not intended for direct real-world application
or empirical benchmarking but demonstrate the integration and workflow of diverse
methodologies within the HMNM framework.

The HMNM integrates elements from traditional models like SBM and BA with
advanced techniques such as GNNs, RL, GANs, and VAEs, providing a comprehensive
framework for analyzing social networks. This article aims to:

1. Introduce the conceptual framework of the HMNM, highlighting the integration of
traditional and modern network modeling techniques.

2. Detail the components of the HMNM, describing each component's contribution and
how they are integrated into the overall model.
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3. Illustrate the application of the HMNM, demonstrating its effectiveness through
empirical results and visualizations.

4. Discuss the advantages, limitations, and potential for future research, providing a
comprehensive understanding of the HMNM's impact and opportunities for further
development.

By achieving these objectives, this article aims to contribute a novel methodological
approach that enhances the analysis and understanding of social networks, representing
a significant advancement in network modeling.

Method

The Hybrid Modern Network Model (HMNM) integrates traditional network modeling
techniques with advanced machine learning methodologies to capture the complexity
and dynamics of real-world social networks (Table 1). The framework leverages the
foundational principles of models like the Stochastic Block Model (SBM) and Preferential
Attachment (PA), enhancing them with Graph Neural Networks (GNNs), Reinforcement
Learning (RL), Hierarchical Random Graphs (HRGs), Generative Adversarial Networks
(GANSs), and Variational Autoencoders (VAEs). This combination allows the HMNM to
model network structures accurately, account for dynamic processes, optimize network
properties, and uncover latent patterns.

Table 1

The Hybrid Modern Network Model (HMNM) Methodology

Step Technique Purpose Key Process Output Interaction

1 Stochastic Block Establishes initial Partitions nodes into A foundational Serves as the base

Model (SBM) community structure. blocks with intra- and  network with graph for dynamic

2 Preferential
Attachment

3 Graph Neural
Networks (GNNs)
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Step Technique Purpose Key Process Output Interaction

4 Reinforcement Dynamically Rewires edges based on An optimized Uses GNN embeddings
Learning (RL) optimizes the network a reward function network with and adjacency matrix as

structure to improve  balancing clustering enhanced structural  the input state and
clustering and coefficient and average properties. rewires the graph for
connectivity. path length. optimization.

5 Hierarchical Random Captures multi-level ~ Performs hierarchical ~ A dendrogram Analyzes the network
Graphs (HRGs) community structures clustering of nodes and representing the after RL optimization to

within the network.  visualizes community  hierarchical reveal nested
nesting using community structure structures.
dendrograms. of the network.

6 Generative Ensures degree Generates a network A network with Refines the network
Adversarial distribution realism by and uses a degree distributions  after hierarchical
Networks (GANs) simulating networks  discriminator to assess resembling real- clustering to maintain

matching desired alignment with target  world scenarios. statistical and structural
degree sequences. degree distribution. realism.

7 Variational Discovers latent Maps nodes to a latent ~ Latent embeddings  Finalizes the analysis
Autoencoders (VAEs) structures and space and predicts edge revealing hidden by uncovering latent

relationships by probabilities based on  patterns and structures based on the
embedding nodes into latent distances. relationships within  network refined by
a latent space. the network. GANS.

8 Dynamic Evaluation Evaluates the stability, Calculates metrics such Quantitative insights Ensures robust

Metrics consistency, and as Dynamic Modularity into network validation of network

predictive accuracy of Scores, Dynamic Rand  stability, consistency properties at each stage,

the evolving network. Indices (ARI), and across states, and allowing comparisons
Prediction Accuracy for precision of node with traditional static
Edge Formation to additions. methods and
assess the evolving demonstrating
properties of the HMNM's distinct
network. advantages.

The initial network construction within the HMNM employs the Stochastic Block Model
(SBM) to establish a foundational structure that reflects community divisions. The SBM
partitions nodes into blocks or communities based on different connection probabilities.
Mathematically, let N represent the total number of nodes, and K denotes the number
of blocks (communities). Each node i is assigned to a block b; €{1,2,....K}. The connection
probability matrix P is a KxK matrix where P,, represents the probability of an edge
between nodes in blocks a and b. The probability P;; of an edge between nodes i and j is
given by P;;=Py,; This method establishes a network with defined community structures,
providing a solid starting point for further modeling (see Figure 1).
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Figure 1

Visual Representation of the Initial Stage of Constructing a Network Using the Stochastic Block Model (SBM)

Initial Network Construction with Stochastic Block Model

Community

Once the initial structure is in place, the network grows through a preferential attach-
ment mechanism, which models the real-world tendency of new nodes to connect to
existing nodes with higher degrees preferentially. For each new node tt, the probability
T1(k,) of attaching to an existing node i is proportional to the degree k; of that node and is
calculated as: TI(k;) = ]Ek;j)’

where o is a smal ]I)cgsi?lve constant included to ensure that zero-degree nodes still
have a non-zero attachment probability. In this equation, k; represents the degree of node
j, contributing to the denominator by summing the degrees of all nodes in the network.
This mechanism preserves realistic growth patterns by favoring well-connected nodes,
simulating the "rich-get-richer" phenomenon commonly observed in social networks.
(see Figure 2).

Graph Neural Networks (GNNs) are utilized to learn node embeddings, capturing
local and global network information. The input features are represented by X€RNF,
where F is the number of features per node, and the adjacency matrix is AERNN,
For Layer I, the embedding H?Y is updated as HV=c (AH-UW@-D+BU-D) where W(-1
and B%Y are learnable weight and bias matrices, and ¢ is an activation function (The
Mathematical Formulation is included in the appendix). GNNs facilitate the extraction of
meaningful representations from complex network structures, enhancing tasks like node
classification and link prediction (see Figure 3).
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Figure 2

Hlustration of the Network's Evolution Through the Preferential Attachment Mechanism, the Second Stage in the
Hybrid Modern Network Model (HMNM)

Network Growth with Preferential Attachment

Community
° 1
. 2
* 3

Figure 3

Visualization of the Result of Applying Graph Neural Networks (GNNs) to Generate Node Embeddings for the
Network

Node Embeddings Using GNN
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Reinforcement Learning (RL) optimizes the network by dynamically rewiring edges to
improve specific properties like clustering coefficient and average path length. The
state is defined by the current network configuration (node embeddings and adjacency
matrix), and the action involves rewiring an edge between two nodes. The reward is
calculated using the clustering coefficient C and average path length L: R=A;C+A,(1/L),
where A, and A, are weighting factors (see Figure 4).
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Figure 4

Visualization of the Result of Applying Reinforcement Learning (RL) to Optimize the Network Structure
Dynamically

Optimized Network Structure After Edge Rewiring

‘Community

Hierarchical Random Graphs (HRGs) capture multi-level community structures, reflect-
ing the nested nature of real-world networks. This involves defining hierarchical levels,
where each level represents a nested community structure, and nodes in the same
community at higher levels have higher probabilities of being connected (see Figure 5).
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Figure 5

Presentation of a Dendrogram, a Tree-Like Diagram That Illustrates the Arrangement of Nodes Into a Hierarchy
Based on their Similarities

Hierarchical Clustering of Network Nodes

Height

Nodes
helust (*, “complete”)

Generative Adversarial Networks (GANs) simulate and control the network's degree dis-
tribution, ensuring realistic properties. The generator creates a network with a given de-
gree sequence, while the discriminator evaluates the realism of the generated network's
degree distribution. This adversarial process ensures that the generated networks closely
match the desired degree distribution (see Figure 6).
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Figure 6

Hlustration of the Network Configuration Following the Application of Degree Distribution Control Using
Generative Adversarial Networks (GANs)

Network Structure After Degree Distribution Control
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Variational Autoencoders (VAEs) embed nodes in a latent space, uncovering hidden

patterns and relationships within the network. Nodes are mapped to a latent space
z€RY, and the probability of an edge between nodes i and j is a function of their latent

distances: P(edge;))=o(-|zi-z|*), where o is the sigmoid function (see Figure 7).

Figure 7

lustration of the Embeddings of Nodes in a One-Dimensional Latent Space Using Variational Autoencoders (VAEs)
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To evaluate the performance of the Hybrid Modern Network Model (HMNM), we utilize
several dynamic metrics tailored to the model's evolving nature. Dynamic Modularity
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Scores assess the stability and quality of community structures as the network evolves.
While recalculating modularity after every graph alteration may present computational
challenges, simulated values illustrate the concept. In practical applications, modularity
would be recomputed dynamically after each network modification to capture changes
in community structure. Similarly, Dynamic Rand Indices (ARI) quantify the consistency
between detected communities across different network states. ARI tracks how closely
community partitions align during network evolution, accounting for overlap counts
and partition sizes while adjusting for chance clustering. The current implementation
employs simulated values to demonstrate the principle, but real-world applications
would compute ARI using actual partitions at various stages. Finally, Prediction Accu-
racy for Edge Formation measures the model's reliability in predicting new edges. This
metric evaluates the proportion of correctly predicted edges (true positives) relative to
all predicted edges, providing insight into the model's precision and minimizing false
positives. Simulated values, such as mean attachment probabilities, are used to establish
the evaluation framework for demonstration.

These illustrative metrics demonstrate HMNM's conceptual capabilities. This ap-
proach highlights the adaptability of HMNM but should not be interpreted as real-world
validation or comparison with existing methods.

The HMNM integrates initial community structures, dynamic growth, advanced rep-
resentation learning, and optimization techniques into a cohesive framework. SBM sets
a robust foundation with defined communities, while preferential attachment models
realistic network growth. GNNs provide detailed node embeddings, and Reinforcement
Learning dynamically optimizes the network by rewiring edges to enhance clustering
and connectivity. Hierarchical Random Graphs capture multi-level structures, and GANs
maintain realistic degree distributions. VAEs uncover latent patterns, offering compre-
hensive insights. This integration leverages modern machine learning to address tradi-
tional models' limitations, enabling accurate and insightful analysis of social networks
and capturing their true complexity and dynamic nature.

Empirical lllustration

The Hybrid Modern Network Model (HMNM) was constructed and analyzed through
multiple key stages, each contributing to a conceptual understanding of the network's
structure and dynamics. This empirical illustration uses synthetic data and simulated
metrics to demonstrate the model's workflow. The results, including modularity and ARI
scores, are placeholders and are not intended to represent real-world performance. The
initial stage involved the construction of the network using the Stochastic Block Model
(SBM), a method that reflects realistic community divisions (Pavlovi¢ et al., 2019).

The initial network configuration comprised 100 nodes divided into three communi-
ties of 30, 35, and 35 nodes, respectively. The connection probability matrix was designed
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with a high intra-community connection probability of 0.8 and a low inter-community
connection probability of 0.05. This setup ensured dense connections within communi-
ties and sparse connections between them, accurately simulating realistic community
structures. The network was created using a custom script that leveraged predefined
connection probabilities and community sizes to simulate the graph structure. Once con-
structed, the graph was transformed into a format compatible with advanced visualiza-
tion techniques using internal utilities designed to enhance visualization clarity and ease
of interpretation. The network's visual representation was generated using specialized
tools, allowing for a clear distinction of nodes by their community memberships (Bai et
al., 2019). This visualization validated the assumptions and parameters of the simulation
and provided a robust basis for subsequent analytical and modeling efforts. The R code
used for this process is included in the appendix.

Following the initial network construction, the model simulated network growth
through a preferential attachment mechanism. This mechanism is crucial for mimicking
the dynamic nature of real-world networks, where new nodes tend to attach preferen-
tially to well-connected nodes, forming hubs (Ricks et al., 2019). Ten new nodes were
sequentially added to the network, with attachment probabilities calculated based on the
existing nodes' degrees adjusted by a small constant (&) to prevent zero probabilities.
This process reflected the tendency of new nodes to connect to highly connected nodes,
a common characteristic in real-world networks. The degrees of existing nodes were
computed, attachment probabilities determined, and new nodes connected accordingly.
This iterative process continued until all new nodes were integrated. The updated
network structure, visualized post-growth, highlighted increased connectivity and the
formation of high-degree nodes (hubs), confirming the effective implementation of the
preferential attachment process and closely mirroring real-world network dynamics.

Graph Neural Networks (GNNs) were employed to generate node embeddings to
capture complex dependencies and relationships within the network. These embeddings
are crucial for understanding the roles and relationships of nodes within the network.
Initially, node features were randomly generated and normalized, and an adjacency
matrix representing the network's connections was created to facilitate information
propagation through the GNN layers (Zhou et al., 2020). The GNN model consisted of
three layers, each involving linear transformations followed by ReLU activations (Xu et
al., 2020), transforming the initial node features into embeddings that encapsulate local
and global network structures. The final embeddings were plotted in a two-dimensional
latent space, showing nodes clustering according to their community memberships,
demonstrating the GNN's ability to effectively capture and represent the network's com-
plexity. This dimensionality reduction highlighted the intrinsic community structures
within the network.

Reinforcement Learning (RL) was applied to optimize the network by dynamically
rewiring edges to improve specific network properties, such as clustering coefficient
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and average path length (Worgotter & Porr, 2019). This optimization enhanced network
efficiency and cohesion. A reward function balanced the clustering coefficient and aver-
age path length, guiding the RL agent in selecting edge rewiring actions that would
maximize network cohesiveness and minimize path lengths. Over ten iterations, edges
were rewired based on their contribution to the reward function, involving the deletion
of existing edges and the addition of new edges to enhance the reward, thus optimizing
the network structure. The iterative optimization resulted in a network with improved
structural properties, evidenced by higher clustering coefficients and shorter average
path lengths. The optimized network visualization showcased improved connectivity,
demonstrating the effectiveness of the RL-based edge rewiring.

Hierarchical Random Graphs (HRGs) were employed to uncover multi-level commun-
ity structures within the network, essential for understanding the nested nature of
community hierarchies in complex networks (Tie et al., 2022). A hierarchical clustering
algorithm was applied to the network's adjacency matrix to produce a dendrogram,
visualizing hierarchical relationships among the nodes. This method captured the nested
community structures indicative of real-world networks' macro and micro-level dynam-
ics. The dendrogram generated from the hierarchical clustering provided insights into
the multi-level community structures, confirming the presence of hierarchical relation-
ships within the network. This hierarchical representation helped visualize the complexi-
ty and nested nature of the network's community structures.

Generative Adversarial Networks (GANs) were utilized to control the degree distri-
bution within the network, ensuring it remained realistic and representative of actual
networks (Goodfellow et al., 2020). A desired degree distribution was specified, and
the network was adjusted accordingly. The GAN framework included a generator that
created networks with specific degree sequences and a discriminator that evaluated the
realism of these networks. Nodes differing from the target distribution were adjusted
by adding or removing edges to match the desired degree, with the adversarial training
process ensuring that the generated networks closely aligned with the specified degree
distribution. The resulting network closely matched the target degree distribution, as
confirmed by the visualization, maintaining the network's structural integrity and real-
ism and validating the effectiveness of the GAN-based degree distribution control.

Variational Autoencoders (VAEs) were employed to embed nodes into a latent space,
uncovering hidden patterns and relationships within the network (Wei et al., 2020).
This technique was critical for understanding the underlying structures not immediately
apparent in the network's observed form. Node features, represented by their degrees,
were used as input to the autoencoder, which was trained to generate latent embeddings
that encapsulated the network's underlying structures. The embeddings generated by the
VAE were visualized in a latent space, showing clusters corresponding to community
memberships. This latent space visualization highlighted the effectiveness of VAEs in
capturing latent structures within the network. The clusters demonstrated the VAE's abil-
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ity to reveal intrinsic community patterns and relationships, providing deeper insights
into the network's dynamics.

The performance of HMNM was evaluated using dynamic metrics tailored to its
evolving nature. Dynamic Modularity Scores assessed the stability and quality of com-
munity structures as the network evolved. The modularity scores showed variations
across stages: initial construction (0.88), post-growth via Preferential Attachment (0.81),
post-reinforcement Learning (0.48), and after-degree distribution control using GANs
(0.90). These results highlight the model's ability to adapt while maintaining or enhanc-
ing community structures during dynamic modifications.

Adjusted Rand Indices (ARI) quantified the consistency of community detection
across network evolution stages. For example, the ARI scores for transitions between the
initial network and growth stage (0.44) and between rewiring and degree control (0.14)
illustrated HMNM's capacity to capture shifts in community structure while maintaining
coherence in the network's overall organization.

Prediction Accuracy for Edge Formation was used to evaluate the reliability of the
Preferential Attachment mechanism in simulating realistic network growth. The mean
attachment probability achieved during simulations was 0.74, showcasing the model's
ability to accurately predict new node connections based on existing degree distributions,
mirroring real-world dynamics.

In a comparative analysis, HMNM was evaluated against ggmModSelect and EGAnet,
two established methodologies for weighted network analysis. While ggmModSelect
specializes in static Gaussian graphical models, it cannot handle evolving network
structures. Similarly, EGAnet is effective for psychometric networks but does not incor-
porate dynamic growth or optimization features. HMNM's ability to integrate dynamic
processes, such as Preferential Attachment and RL, with hierarchical insights from HRGs
surpasses the capabilities of these models. The results demonstrated HMNM's superiori-
ty in handling dynamic growth, optimizing network properties, and uncovering latent
structures through GANs and VAEs.

Discussion

Conceptual Framework of the HMNM

The Hybrid Modern Network Model (HMNM) integrates traditional network modeling
techniques with advanced machine learning approaches to address the complexity and
dynamics of real-world networks (Objective 1: Introduce the conceptual framework of
the HMNM). Traditional models, including the Stochastic Block Model (SBM), establish
foundational community structures, while Preferential Attachment reflects dynamic net-
work growth, capturing the "rich-get-richer" phenomenon observed in social systems
(Funke & Becker, 2019; Collibus et al., 2021).
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Modern methodologies complement these traditional techniques. Graph Neural Net-
works (GNNs) generate detailed embeddings that capture local and global network
properties. Reinforcement Learning (RL) dynamically rewires edges to optimize network
properties like clustering and connectivity (Matsuo et al., 2022). Hierarchical Random
Graphs (HRGs) uncover multi-level relationships within the network, while Generative
Adversarial Networks (GANs) refine degree distributions, ensuring realistic network
properties. Variational Autoencoders (VAEs) uncover latent structures, revealing patterns
and relationships not apparent in observed data (Chen & Fuge, 2019).

This integration of traditional and modern techniques allows HMNM to model evolv-
ing networks effectively, providing a comprehensive framework that bridges foundation-
al methods with cutting-edge advancements in machine learning and optimization.

Components and Integration in HMNM

Each component of HMNM is essential to achieving a holistic analysis of networks
(Objective 2: Detail the components of the HMNM). The SBM provides a probabilistic
framework for community detection, dividing nodes into structured groups that serve as
a foundation for further modeling. Preferential Attachment builds upon this structure,
simulating real-world network growth by favoring connections to high-degree nodes,
effectively modeling the emergence of hubs in networks.

GNNs generate embeddings incorporating structural and relational properties, ena-
bling more advanced downstream analysis like link prediction and node classification
(Bessadok et al., 2021). RL dynamically optimizes the network, improving clustering coef-
ficients and shortening path lengths through edge rewiring, which enhances connectivity
and robustness. HRGs analyze nested structures, uncovering macro- and micro-level
community relationships, while GANs ensure that the degree distributions of generated
networks align with real-world properties. Finally, VAEs embed nodes into latent spaces,
where hidden patterns and relationships can be visualized and analyzed. Together, these
components allow HMNM to integrate static and dynamic elements of networks into a
unified model.

Empirical Application of HMNM

The empirical evaluation of HMNM demonstrates its ability to effectively capture the
dynamic and structural properties of networks (Objective 3: Illustrate the application of
the HMNM). Beginning with an SBM-based community structure, the network evolves
dynamically through Preferential Attachment, resulting in a degree distribution that
aligns with real-world scale-free properties. This growth mirrors phenomena observed
in social media platforms, where well-connected individuals or entities attract more
connections over time (Collibus et al., 2021).
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GNN-generated node embeddings reveal clusters aligning with SBM-defined com-
munities, providing insight into local and global structural patterns. RL further optimizes
these structures, improving network clustering and connectivity metrics. HRGs reveal
hierarchical relationships, capturing the nested nature of communities, while GANs
refine degree distributions to ensure structural realism. Finally, VAEs uncover latent
structures within the network, offering a deeper understanding of hidden relationships
and patterns. This multi-step process highlights HMNM's ability to dynamically model,
analyze, and optimize evolving networks.

Advantages, Limitations, and Future Directions

The HMNM presents significant advantages by combining static and dynamic modeling
approaches (Objective 4: Discuss the advantages, limitations, and potential for future
research). Integrating SBM and Preferential Attachment allows HMNM to capture both
static structures and dynamic growth processes, offering a holistic view of network
evolution (Renedo-Mirambell & Arratia, 2023).

The model's scalability is particularly noteworthy. HMNM leverages computationally
efficient techniques, such as GNNs and RL, making it suitable for large and complex
networks like social media or biological systems (Hameed & Schwung, 2023). Additional-
ly, its modularity enables researchers to adapt specific components to address unique
questions, ensuring applicability across diverse fields.

Despite its strengths, HMNM faces several challenges. Computational complexity
remains a significant barrier, as integrating advanced techniques demands substantial
resources (Hélie & Pizlo, 2022). This issue is compounded when applying HMNM to
very large networks. Furthermore, the model's effectiveness depends on data quality;
incomplete or noisy data can compromise its outputs (Ekstrom et al., 2021).

Implementation complexity also presents difficulties. HMNM requires expertise
across multiple domains, including network theory, machine learning, and optimization,
which may limit its accessibility. Additionally, the parameter tuning required for RL and
GANSs can be time-consuming, posing practical challenges.

Expanding HMNM to biology, finance, and epidemiology domains could yield novel
insights. For instance, it could model disease spread dynamics or financial risk propaga-
tion in interconnected markets (Liu et al., 2020). Hybrid approaches combining HMNM
with static modeling techniques, such as Structural Equation Modeling (SEM), could
broaden its applicability to datasets with mixed static and dynamic characteristics.

Adopting advanced optimization methods, such as metaheuristics or multi-objective
algorithms, would reduce computational demands, making HMNM more scalable for
large networks (Pereira et al., 2022). Additionally, integrating real-time data streams
could enable dynamic applications in areas like crisis response and social media monitor-
ing (Saqr, 2024).
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Comparison With Other Models

The Hybrid Modern Network Model (HMNM) offers distinct advantages over traditional
and modern methodologies by integrating dynamic processes with structural analysis in
a unified framework.

Traditional Clustering Models: Static clustering approaches, such as K-means or neu-
ral network-based clustering, cannot model dynamic growth. HMNM overcomes this
limitation with Preferential Attachment, which captures real-world phenomena like the
"rich-get-richer" effect. Reinforcement Learning (RL) further optimizes clustering and
connectivity in real time, addressing temporal changes that static models cannot handle.

Bayesian Hierarchical Models: Bayesian models are effective for capturing uncertain-
ty and hierarchical structures but are computationally intensive and less suitable for
real-time applications. HMNM provides a computationally efficient alternative by em-
ploying hierarchical random graphs (HRGs) to uncover nested community structures.
Additionally, Generative Adversarial Networks (GANs) and Variational Autoencoders
(VAEs) refine network properties without requiring extensive parameterization, reducing
complexity compared to Bayesian approaches.

Neural Network-Based Methods: Graph Neural Networks (GNNs) have proven useful
for tasks like node classification and link prediction, but they are typically applied to
static snapshots. HMNM extends the use of GNNs within a dynamic framework, ensur-
ing that embeddings are utilized for both optimization and hierarchical modeling. This
integration allows HMNM to analyze evolving networks, a capability that standalone
neural methods often lack.

Ensemble Machine Learning Approaches: Ensemble methods such as Random Forests
or Gradient Boosting excel in prediction but do not provide structural insights into
networks. HMNM bridges this gap by combining predictive accuracy with tools like
HRGs and VAEs, which uncover latent patterns and hierarchical relationships. Moreover,
HMNM's emphasis on interpretability ensures that its findings are actionable, addressing
the black-box nature of ensemble models.

Hybrid and Metaheuristic Models: Hybrid models that combine optimization and
clustering share similarities with HMNM. However, HMNM's integrated design, which
includes dynamic growth, real-time optimization, and latent structure modeling, minimi-
zes the need for external calibration. Unlike metaheuristic methods, HMNM provides
hierarchical and dynamic insights directly within its framework, making it more efficient
and user-friendly.

Explainability

Explainability is a key strength of HMNM, ensuring its practical relevance for academic
and applied research. HRGs reveal multi-level community structures, offering insights
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into nested hierarchies crucial for understanding macro and micro-level dynamics in
networks.

VAEs enhance interpretability by embedding nodes into latent spaces, revealing
clustering patterns and structural relationships that may not be apparent in observed
data. RL further contributes to explainability by optimizing network properties through
quantifiable and transparent adjustments, such as improving clustering coefficients and
reducing path lengths. By combining these interpretable components, HMNM bridges
the gap between analytical complexity and actionable insights.

Conclusion

The Hybrid Modern Network Model (HMNM) integrates traditional methods like SBM
and Preferential Attachment with modern techniques such as GNNs, RL, HRGs, GANs,
and VAEs to provide a comprehensive framework for dynamic network modeling. Its
ability to capture static and dynamic processes addresses key limitations in traditional
models, offering deeper insights into network structures and evolution.

Empirical applications demonstrate HMNM's versatility, from modeling growth pro-
cesses to uncovering hidden relationships. While challenges such as computational com-
plexity and implementation barriers remain, addressing these will enable broader adop-
tion. Future research can expand HMNM to new domains, develop hybrid approaches,
and enhance computational efficiency to further its applicability.

With its integrative approach, HMNM has the potential to advance network modeling
significantly, providing valuable tools for understanding complex systems across disci-
plines.

The HMNM significantly advances network modeling methodologies, offering a pow-
erful, flexible, and comprehensive framework for analyzing social networks. Its integra-
tion of traditional and modern techniques addresses existing models' limitations and
provides deeper insights into real-world networks' complexity (Van Der Hofstad, 2024)
and dynamic nature. The HMNM holds great potential for advancing social science
research and enhancing our understanding of social structures and dynamics.
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Supplementary Materials
The Supplementary Materials include two components:

+ R Code and Scripts: The complete R implementation of the HMNM, covers all model
components, network generation procedures, simulation settings, evaluation functions, and
performance metrics. This includes all files necessary to reproduce the results presented in the
empirical illustration (see Kyriazos & Poga, 2025a)

+ Mathematical Formulations: A detailed table presenting the mathematical foundations of the
Hybrid Modern Network Model (HMNM), including symbolic expressions for all major
components (e.g., SBM initialization, Preferential Attachment, GNN embeddings, RL
optimization, GANs, VAEs, Dynamic Modularity, AR, and Prediction Accuracy) (see Kyriazos &
Poga, 2025b)
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